DIFFUSION EPIDEMIC MODELS WITH INCUBATION AND CRISSCROSS DYNAMICS

被引:35
作者
FITZGIBBON, WE
PARROTT, ME
WEBB, GF
机构
[1] UNIV S FLORIDA,DEPT MATH,TAMPA,FL
[2] VANDERBILT UNIV,DEPT MATH,NASHVILLE,TN
关键词
D O I
10.1016/0025-5564(94)00070-G
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A diffusion age-structured epidemic model is analyzed. The model describes an epidemic in a host-vector two-population system. Each population is diffusing in a spatial region. Each population is divided into susceptible, incubating, and infectious subclasses. The incubating and infectious subclasses in each population are determined by a structure variable corresponding to age since infection. The model consists of a system of nonlinear partial differential equations with crisscross dynamics. The existence, uniqueness, and asymptotic behavior of solutions are analyzed.
引用
收藏
页码:131 / 155
页数:25
相关论文
共 30 条
[1]  
Bailey NTJ, 1982, BIOMATHEMATICS MALAR
[2]   ENDEMIC THRESHOLDS AND STABILITY IN A CLASS OF AGE-STRUCTURED EPIDEMICS [J].
BUSENBERG, S ;
COOKE, K ;
IANNELLI, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (06) :1379-1395
[3]  
BUSENBERG SN, 1991, LECT NOTES PURE APPL, V131, P283
[4]   GLOBAL SOLUTION FOR A DIFFUSIVE NON-LINEAR DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (02) :274-284
[5]  
De Mottoni P., 1979, Nonlinear Analysis Theory, Methods & Applications, V3, P663, DOI 10.1016/0362-546X(79)90095-6
[6]   THRESHOLDS AND TRAVELING WAVES FOR THE GEOGRAPHICAL SPREAD OF INFECTION [J].
DIEKMANN, O .
JOURNAL OF MATHEMATICAL BIOLOGY, 1978, 6 (02) :109-130
[7]  
Diekmann O., 1977, NONLINEAR ANAL-THEOR, V1, P459, DOI [10.1016/0362-546X(77)90011-6, DOI 10.1016/0362-546X(77)90011-6]
[8]  
DIETZ K, 1988, PRINCIPLES PRACTICE, P1091
[9]  
FITZGIBBON WE, 1991, LECT NOTES PURE APPL, V131, P177
[10]  
HOPPENSTEADT F, 1975, SIAM REG C SERIES AP