COMPUTING INTERIOR EIGENVALUES OF LARGE MATRICES

被引:137
作者
MORGAN, RB
机构
[1] Department of Mathematics The University of Missouri, Columbia
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(91)90381-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computing eigenvalues from the interior of the spectrum of a large matrix is a difficult problem. The Rayleigh-Ritz procedure is a standard way of reducing it to a smaller problem, but it is not optimal for interior eigenvalues. Here a method is given that does a better job. In contrast with standard Rayleigh-Ritz, a priori bounds can be given for the accuracy of interior eigenvalue and eigenvector approximations. When applied to the Lanczos algorithm, this method yields better approximations at early stages. Applied to preconditioning methods, the convergence rate is improved.
引用
收藏
页码:289 / 309
页数:21
相关论文
共 16 条
[1]   ADAPTIVE POLYNOMIAL PRECONDITIONING FOR HERMITIAN INDEFINITE LINEAR-SYSTEMS [J].
ASHBY, SF ;
MANTEUFFEL, TA ;
SAYLOR, PE .
BIT, 1989, 29 (04) :583-609
[2]  
Cline A. K., 1976, SPARSE MATRIX COMPUT, P409
[3]   ITERATIVE CALCULATION OF A FEW OF LOWEST EIGENVALUES AND CORRESPONDING EIGENVECTORS OF LARGE REAL-SYMMETRIC MATRICES [J].
DAVIDSON, ER .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :87-94
[4]   EXTREMAL POLYNOMIALS WITH APPLICATION TO RICHARDSON ITERATION FOR INDEFINITE LINEAR-SYSTEMS [J].
DEBOOR, C ;
RICE, JR .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (01) :47-57
[5]  
DRAUX A, 1983, LECTURE NOTES MATH, V974
[6]   THE SPECTRAL TRANSFORMATION LANCZOS METHOD FOR THE NUMERICAL-SOLUTION OF LARGE SPARSE GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS [J].
ERICSSON, T ;
RUHE, A .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1251-1268
[7]  
FREUND R, 1989, COMMUNICATION
[9]   ESTIMATES FOR SOME COMPUTATIONAL TECHNIQUES IN LINEAR ALGEBRA [J].
KANIEL, S .
MATHEMATICS OF COMPUTATION, 1966, 20 (95) :369-&
[10]   GENERALIZATIONS OF DAVIDSON METHOD FOR COMPUTING EIGENVALUES OF SPARSE SYMMETRICAL-MATRICES [J].
MORGAN, RB ;
SCOTT, DS .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03) :817-825