INTERPOLATING RUNGE-KUTTA METHODS FOR VANISHING DELAY-DIFFERENTIAL EQUATIONS

被引:12
作者
ENRIGHT, WH
HU, M
机构
[1] Department of Computer Science, University of Toronto, Toronto, M5S 1A4, Ontario
关键词
RUNGE-KUTTA METHODS; INTERPOLATIONS; DELAY DIFFERENTIAL EQUATIONS;
D O I
10.1007/BF02238433
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the numerical solution of delay differential equations by a continuous explicit Runge-Kutta method a difficulty arises when the delay vanishes or becomes smaller than the stepsize the method would hire to use. In this situation the standard explicit sequential process of computing the Runge-Kutta stages becomes an implicit process and an iteration scheme must be adopted. We will consider alternative iteration schemes and investigate their order.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 16 条
[1]   A 5TH-ORDER INTERPOLANT FOR THE DORMAND AND PRINCE RUNGE-KUTTA METHOD [J].
CALVO, M ;
MONTIJANO, JI ;
RANDEZ, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 29 (01) :91-100
[2]   A NEW ERROR-CONTROL FOR INITIAL-VALUE SOLVERS [J].
ENRIGHT, WH .
APPLIED MATHEMATICS AND COMPUTATION, 1989, 31 :288-301
[4]   INTERPOLANTS FOR RUNGE-KUTTA FORMULAS [J].
ENRIGHT, WH ;
JACKSON, KR ;
NORSETT, SP ;
THOMSEN, PG .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1986, 12 (03) :193-218
[5]  
ENRIGHT WH, 1994, 292 U TOR DEP COMP S
[6]  
HAYASHI H, 1993, MAY CAMS ANN M
[8]  
Hull T. E., 1976, 100 U TOR DEP COMP S
[9]  
KAROUI A, 1993, COMMUNICATION
[10]  
NEVES KW, 1992, TR92003 RADF U TECHN