A NEW TECHNIQUE FOR NONCONVEX PRIMAL DUAL DECOMPOSITION OF A LARGE-SCALE SEPARABLE OPTIMIZATION PROBLEM

被引:25
作者
TANIKAWA, A [1 ]
MUKAI, H [1 ]
机构
[1] WASHINGTON UNIV,DEPT SYST SCI & MATH,ST LOUIS,MO 63130
关键词
D O I
10.1109/TAC.1985.1103899
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:133 / 143
页数:11
相关论文
共 14 条
[1]   CONVEXIFICATION PROCEDURES AND DECOMPOSITION METHODS FOR NON-CONVEX OPTIMIZATION PROBLEMS [J].
BERTSEKAS, DP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 29 (02) :169-197
[2]  
Fletcher R., 1970, Integer and nonlinear programming, P157
[3]   A NEW METHOD FOR OPTIMIZATION OF A NONLINEAR FUNCTION SUBJECT TO NONLINEAR CONSTRAINTS [J].
HAARHOFF, PC ;
BUYS, JD .
COMPUTER JOURNAL, 1970, 13 (02) :178-&
[4]  
Hestenes M. R., 1969, Journal of Optimization Theory and Applications, V4, P303, DOI 10.1007/BF00927673
[5]  
Himmelblau DM., 2018, APPL NONLINEAR PROGR
[6]  
Kantorovich LV, 1964, FUNCTIONAL ANAL NORM
[7]  
Liusternik L. A., 1961, ELEMENTS FUNCTIONAL
[8]  
Luenberger D. G., 1973, INTRO LINEAR NONLINE
[9]   QUADRATICALLY CONVERGENT PRIMAL-DUAL ALGORITHM WITH GLOBAL CONVERGENCE PROPERTIES FOR SOLVING OPTIMIZATION PROBLEMS WITH EQUALITY CONSTRAINTS [J].
MUKAI, H ;
POLAK, E .
MATHEMATICAL PROGRAMMING, 1975, 9 (03) :336-349
[10]  
Powell M. J. D., 1969, OPTIMIZATION