YAMABE METRICS OF POSITIVE SCALAR CURVATURE AND CONFORMALLY FLAT MANIFOLDS

被引:22
作者
AKUTAGAWA, K [1 ]
机构
[1] SHIZUOKA UNIV,DEPT MATH,SHIZUOKA 422,JAPAN
关键词
YAMABE METRIC; POSITIVE SCALAR CURVATURE; FLAT CONFORMAL STRUCTURE;
D O I
10.1016/0926-2245(94)00015-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let CY(n, mu0, R0) be the class of compact connected smooth manifolds M of dimension n greater-than-or-equal-to 3 and with Yamabe metrics g of unit volume such that each (M, g) is conformally flat and satisfies mu(M,[g]) greater-than-or-equal-to mu0 > 0, integral(M)E(g)\n/2dupsilon(g) less-than-or-equal-to R0, where [g], mu(M,[g]) and E(g) denote the conformal class of g, the Yamabe invariant of (M,[g]) and the traceless part of the Ricci tensor of g, respectively. In this paper, we study the boundary partial-derivativeCY(n,mu0, R0) of CY(n, mu0, R0) in the space of all compact metric spaces equipped with the Hausdorff distance. We shall show that an element in partial-derivativeCY(n, mu0, R0) is a compact metric space (X, d). In particular, if (X, d) is not a point, then it has a structure of smooth manifold outside a finite subset S, and moreover, on X/S there is a conformally flat metric g of positive constant scalar curvature which is compatible with the distance d.
引用
收藏
页码:239 / 258
页数:20
相关论文
共 32 条
[1]  
Anderson M., 1989, J AM MATH SOC, V2, P455, DOI DOI 10.2307/1990939
[2]  
ANDERSON MT, 1993, P S PURE MATH 3, V54, P53
[3]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[4]  
Aubin Thierry, 1982, MONGE AMPERE EQUATIO, V252
[5]   ON A CONSTRUCTION OF COORDINATES AT INFINITY ON MANIFOLDS WITH FAST CURVATURE DECAY AND MAXIMAL VOLUME GROWTH [J].
BANDO, S ;
KASUE, A ;
NAKAJIMA, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :313-349
[6]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[7]  
Bishop RL., 1964, GEOMETRY MANIFOLDS, P273
[8]  
CHEEGER J, 1982, J DIFFER GEOM, V17, P15
[9]  
GALLOT S, 1988, ASTERISQUE, V157, P191
[10]  
GILBARG D, 1983, ELLIPTIC PARTIAL DIF