The cAMP receptor protein (CRP) of Escherichia coli needs cAMP for an allosteric change to regulate gene expression by binding to specific DNA sites. The hinge region connecting the DNA-binding domain to the cAMP-binding domain has been proposed to participate in the cAMP-induced allosteric change necessary to adjust C and D alpha-helices for movement of the DNA-binding F alpha-helix away from the protein surface. The role of the hinge region for a conformation change in CRP was tested by studying the effects of single amino acid substitutions at residue 138 located within the hinge. Physiological studies of wild-type and mutant cells and biochemical analysis of purified wild-type and mutant CRP revealed at least three groups of altered CRPs: (i) CRP that behaves like wild type (CRP+); (ii) CRP that binds cAMP but does not complete the structural changes required for specific DNA binding, proteolytic cleavage, and transcription activation (CRP(allo)); and (iii) CRP that shows some or all; of these conformational changes without cAMP (CRP*). These results show a pivotal role of position 138 from which change emanates and provide further evidence that a hinge reorientation involving residue 138 is involved in the interhelical adjustments.