FINITE-DIMENSIONAL APPROXIMATION FOR OPTIMAL FIXED-ORDER COMPENSATION OF DISTRIBUTED PARAMETER-SYSTEMS

被引:9
作者
BERNSTEIN, DS [1 ]
ROSEN, IG [1 ]
机构
[1] UNIV SO CALIF,DEPT MATH,LOS ANGELES,CA 90089
关键词
Distributed parameter systems; Finite‐dimensional compensation; Optimal control;
D O I
10.1002/oca.4660110102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In controlling distributed parameter systems it is often desirable to obtain low‐order, finite‐dimensional controllers in order to minimize real‐time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite‐dimensional approximation of the infinite‐dimensional Bernstein/Hyland optimal projection theory. Our approach yields fixed‐finite‐order controllers which are optimal with respect to high‐order, approximating, finite‐dimensional plant models. We illustrate the technique by computing a sequence of first‐order controllers for one‐dimensional, single‐input/single‐output parabolic (heat/diffusion) and hereditary systems using a spline‐based, Ritz‐Galerkin, finite element approximation. Our numerical studies indicate convergence of the feedback gains with less than 2% performance degradation over full‐order LQG controllers for the parabolic system and 10% degradation for the hereditary system. Copyright © 1990 John Wiley & Sons, Ltd.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 27 条
[1]  
BALAKRISHNAN AV, 1981, APPLIED FUNCTIONAL A
[2]   A SPLINE BASED TECHNIQUE FOR COMPUTING RICCATI OPERATORS AND FEEDBACK CONTROLS IN REGULATOR PROBLEMS FOR DELAY EQUATIONS [J].
BANKS, HT ;
ROSEN, IG ;
ITO, K .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (04) :830-855
[3]   THE LINEAR REGULATOR PROBLEM FOR PARABOLIC-SYSTEMS [J].
BANKS, HT ;
KUNISCH, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (05) :684-698
[4]   HEREDITARY CONTROL PROBLEMS - NUMERICAL-METHODS BASED ON AVERAGING APPROXIMATIONS [J].
BANKS, HT ;
BURNS, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (02) :169-208
[5]   THE OPTIMAL PROJECTION EQUATIONS FOR FINITE-DIMENSIONAL FIXED-ORDER DYNAMIC COMPENSATION OF INFINITE-DIMENSIONAL SYSTEMS [J].
BERNSTEIN, DS ;
HYLAND, DC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (01) :122-151
[6]  
Curtain R.F., 1978, INFINITE DIMENSIONAL
[7]  
GIBSON JS, 1987, LECT NOTES CONTR INF, V102, P120
[8]   APPROXIMATION OF DISCRETE-TIME LQG COMPENSATORS FOR DISTRIBUTED SYSTEMS WITH BOUNDARY INPUT AND UNBOUNDED MEASUREMENT [J].
GIBSON, JS ;
ROSEN, IG .
AUTOMATICA, 1988, 24 (04) :517-529
[9]   NUMERICAL APPROXIMATION FOR THE INFINITE-DIMENSIONAL DISCRETE-TIME OPTIMAL LINEAR-QUADRATIC REGULATOR PROBLEM [J].
GIBSON, JS ;
ROSEN, IG .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (02) :428-451