Fertilization of mouse eggs produces a 1-cell embryo containing both a paternal and maternal pronucleus. These two nuclei combine during the first mitosis to form the zygotic nuclei of 2-cell embryos. This transition is accompanied by the onset of transcription and the decline of maternal mRNA-dependent gene expression. To determine how changes in nuclear composition affect gene expression, plasmid DNA containing a promoter and an enhancer that function throughout a broad host range was injected into nuclei of oocytes and embryos. The requirements for promoter activity in paternal pronuclei of 1-cell embryos were distinct from those in maternal or zygotic nuclei: (1) Paternal pronuclei permitted high levels of promoter activity relative to maternal or zygotic nuclei. (2) Butyrate, an agent that alters chromatin structure, stimulated promoter activity in maternal or zygotic nuclei, but not in paternal pronuclei. (3) The embryo-responsive polyomavirus F101 enhancer also stimulated promoter activity, but only after formation of a 2-cell embryo. Either butyrate or the F101 enhancer stimulated promoter activity in zygotic nuclei to the level observed in paternal pronuclei. Stimulation also was observed with 2-cell embryos containing nuclei of only maternal or paternal origin, but their transcriptional capacity was more limited. These and other results support the hypothesis that the need for enhancers in 2-cell embryos results from repression by chromatin structure, and the role of enhancers is to relieve this repression. © 1993 by Academic Press, Inc.