LINEAR-TIME EUCLIDEAN DISTANCE TRANSFORM ALGORITHMS

被引:322
作者
BREU, H
GIL, J
KIRKPATRICK, D
WERMAN, M
机构
[1] TECHNION ISRAEL INST TECHNOL,FAC COMP SCI,IL-32000 HAIFA,ISRAEL
[2] HEBREW UNIV JERUSALEM,INST COMP SCI,IL-91904 JERUSALEM,ISRAEL
基金
加拿大自然科学与工程研究理事会;
关键词
DISTANCE TRANSFORM; VORONOI DIAGRAM; ALGORITHM; EUCLIDEAN DISTANCE;
D O I
10.1109/34.391389
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Two linear time (and hence asymptotically optimal) algorithms for computing the Euclidean distance transform of a two-dimensional binary image are presented. The algorithms are based on the construction and regular sampling of the Voronoi diagram whose sites consist of the unit (feature) pixels in the image. The first algorithm, which is of primarily theoretical interest, constructs the complete Voronoi diagram, The second, more practical, algorithm constructs the Voronoi diagram where it intersects the horizontal lines passing through the image pixel centers. Extensions to higher dimensional images and to other distance functions are also discussed.
引用
收藏
页码:529 / 533
页数:5
相关论文
共 21 条
  • [1] ARCE, 1980, IM, P1122
  • [2] ARCELLI C, 1986, PATTERN RECOGN, P383
  • [3] DISTANCE TRANSFORMATIONS IN DIGITAL IMAGES
    BORGEFORS, G
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 34 (03): : 344 - 371
  • [4] DISTANCE TRANSFORMATIONS IN ARBITRARY DIMENSIONS
    BORGEFORS, G
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 27 (03): : 321 - 345
  • [5] BORGEFORS G, 1986, P INT JOINT C PATT R, P336
  • [6] CLARKSON K, 1987, 19TH P ANN ACM S THE, P56
  • [7] EUCLIDEAN DISTANCE MAPPING
    DANIELSSON, PE
    [J]. COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 14 (03): : 227 - 248
  • [8] DISTANCE FUNCTIONS IN DIGITAL GEOMETRY
    DAS, PP
    CHAKRABARTI, PP
    CHATTERJI, BN
    [J]. INFORMATION SCIENCES, 1987, 42 (02) : 113 - 136
  • [9] Dirichlet GL., 1850, J REINE ANGEW MATH, V40, P209, DOI DOI 10.1515/CRLL.1850.40.209
  • [10] FAIRFIELD J, 1983, IEEE T PATTERN ANAL, V32, P104