ORDER AND DISORDER IN METALLIC ALLOYS

被引:12
作者
GYORFFY, BL
STOCKS, GM
GINATEMPO, B
JOHNSON, DD
NICHOLSON, DM
PINSKI, FJ
STAUNTON, JB
WINTER, H
机构
[1] OAK RIDGE NATL LAB,DIV MET & CERAM,OAK RIDGE,TN 37831
[2] UNIV MESSINA,INST FIS TEOR,I-98100 MESSINA,ITALY
[3] SANDIA NATL LABS,LIVERMORE,CA 94551
[4] UNIV CINCINNATI,DEPT PHYS,CINCINNATI,OH 45221
[5] UNIV WARWICK,DEPT PHYS,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
[6] KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH,W-7500 KARLSRUHE 1,GERMANY
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1991年 / 334卷 / 1635期
关键词
D O I
10.1098/rsta.1991.0031
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Self-consistent 'band theory', based on density functional theory, is a useful approach to describing the electron glue which holds solids together. However, its powerful group theoretic and numerical techniques cannot be deployed for disordered states of matter. The self-consistent KKR-CPA is an analogous method which is able to deal with some of these interesting cases. In particular, we show how it describes random metallic alloys, treating all the classic Hume-Rothery factors: size-effect, electronegativity and electrons per atom ratio (e:a) on more or less equal footing and from first principles. Moreover, we use the KKR-CPA framework to analyse the instability of the disorder state to compositional ordering processes and hence provide a first principle description of the forces which drive order-disorder transformations.
引用
收藏
页码:515 / 526
页数:12
相关论文
共 29 条
[21]  
MORUZZI VL, 1978, CALCULATED ELECTRONI
[22]  
Mott N., 1936, THEORY PROPERTIES ME
[23]  
OSHIMA K, 1976, ACTA CRYSTALLOGR A, V32, P883
[24]  
SATO H, 1965, ALLOYING BEHAVIOUR E
[25]   PAIR EFFECTS IN SUBSTITUTIONAL ALLOYS .1. SYSTEMATIC ANALYSIS OF COHERENT-POTENTIAL APPROXIMATION [J].
SCHWARTZ, L ;
SIGGIA, E .
PHYSICAL REVIEW B-SOLID STATE, 1972, 5 (02) :383-+
[26]  
STOCKS GM, 1984, ASI SERIES, V113
[27]  
TELEGLIA G, 1987, J PHYS F MET PHYS, V50, P374
[28]  
Ziman J.M., 1979, MODELS DISORDER THEO
[29]   SPECIAL QUASIRANDOM STRUCTURES [J].
ZUNGER, A ;
WEI, SH ;
FERREIRA, LG ;
BERNARD, JE .
PHYSICAL REVIEW LETTERS, 1990, 65 (03) :353-356