ON THE CONVERGENCE OF THE BILINEAR-VELOCITY CONSTANT-PRESSURE FINITE-ELEMENT METHOD IN VISCOUS-FLOW

被引:9
作者
LETALLEC, P [1 ]
RUAS, V [1 ]
机构
[1] PONTIFICIA UNIV CATOLICA,DEPT INFORMAT,BR-22453 RIO DE JANEIRO,BRAZIL
关键词
ELASTICITY - Measurements - MATHEMATICAL TECHNIQUES - Finite Element Method;
D O I
10.1016/0045-7825(86)90128-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we show that the standard isoparametric Q//1 multiplied by Q//0 velocity pressure finite element method for solving viscous flow problems leads to a fully and optimally convergent sequence of approximations, if an appropriate quadrangulation of the domain is used.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 12 条
[1]   STABLE AND SEMISTABLE LOW ORDER FINITE-ELEMENTS FOR VISCOUS FLOWS [J].
BOLAND, JM ;
NICOLAIDES, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (03) :474-492
[2]   CONSISTENT VS REDUCED INTEGRATION PENALTY METHODS FOR INCOMPRESSIBLE MEDIA USING SEVERAL OLD AND NEW ELEMENTS [J].
ENGELMAN, MS ;
SANI, RL ;
GRESHO, PM ;
BERCOVIER, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1982, 2 (01) :25-42
[3]  
Fortin M., 1982, METHODES LAGRANGIEN
[4]  
GIRAULT V, 1979, FINITE ELEMENT APPRO
[5]  
HUGHES TJR, 1978, COMPUT METH APPL MEC, V15, P63
[6]  
JOHNSON C, 1980, ANAL SOME MIXED FINI
[7]  
KIKUCHI N, 1982, INT J NUMER METHS EN, V18, P701
[8]   COMPATIBILITY CONDITION AND EXISTENCE RESULTS IN DISCRETE FINITE INCOMPRESSIBLE ELASTICITY [J].
LETALLEC, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 27 (02) :239-259
[9]   A MIXED FINITE-ELEMENT APPROXIMATION OF THE NAVIER-STOKES EQUATIONS [J].
LETALLEC, P .
NUMERISCHE MATHEMATIK, 1980, 35 (04) :381-404
[10]  
RUAS V, 1982, 10 PONT U CAT RIO DE