WIGNER DISTRIBUTION FUNCTION OF A SIMPLE OPTICAL-SYSTEM - AN EXTENDED-PHASE-SPACE APPROACH

被引:9
作者
ABE, S
SUZUKI, N
机构
[1] MAX PLANCK INST NUCL PHYS, W-6900 HEIDELBERG, GERMANY
[2] NIHON UNIV, COLL SCI & TECHNOL, DEPT PHYS, CHIYODA KU, TOKYO 101, JAPAN
来源
PHYSICAL REVIEW A | 1992年 / 45卷 / 01期
关键词
D O I
10.1103/PhysRevA.45.520
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We construct the Wigner distribution function for a coupled boson-fermion system. This function is regarded as a certain "superfield" defined on the extended phase space, the points of which are labeled by the anticommuting canonical c variables together with the ordinary ones. In this approach, the variables of a fermion and a boson are treated on a completely equal footing, and the phase-space representation is fully realized. We apply the formalism to the kinetic theory of the optical Dicke model with a two-level atom, and show how systematically a set of the generalized Fokker-Planck equations, which describes the effective dynamics of the radiation field, is derived from a single superfieldlike equation.
引用
收藏
页码:520 / 523
页数:4
相关论文
共 22 条
[1]   WIGNER DISTRIBUTION FUNCTION AND COHERENT STATE OF A FERMION [J].
ABE, S ;
SUZUKI, N .
EUROPHYSICS LETTERS, 1989, 9 (02) :101-106
[2]   CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS .2. QUANTUM MECHANICS IN PHASE SPACE [J].
AGARWAL, GS ;
WOLF, E .
PHYSICAL REVIEW D, 1970, 2 (10) :2187-+
[3]   CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS .3. A GENERALIZED WICK THEOREM AND MULTITIME MAPPING [J].
AGARWAL, GS ;
WOLF, E .
PHYSICAL REVIEW D, 1970, 2 (10) :2206-&
[5]  
Allen L., 1987, WILEYINTERSCIENCE PU, V28
[6]   SUPERSYMMETRY IN THE JAYNES-CUMMINGS MODEL [J].
ANDREEV, VA ;
LERNER, PB .
PHYSICS LETTERS A, 1989, 134 (8-9) :507-511
[7]   WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES [J].
BALAZS, NL ;
JENNINGS, BK .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06) :347-391
[8]   SEMICLASSICAL FERMION MU-SPACE DENSITY IN 3 DIMENSIONS [J].
BALAZS, NL ;
ZIPFEL, GG .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (12) :2086-2089
[9]  
BEREZIN FA, 1966, METHOD 2ND QUANTIZAT
[10]   QUANTUM COLLISION-THEORY WITH PHASE-SPACE DISTRIBUTIONS [J].
CARRUTHERS, P ;
ZACHARIASEN, F .
REVIEWS OF MODERN PHYSICS, 1983, 55 (01) :245-285