A COMPARATIVE RAMAN-SPECTROSCOPIC STUDY OF CHOLINESTERASES

被引:11
作者
ASLANIAN, D
GROF, P
BON, S
MASSON, P
NEGRERIE, M
CHATEL, JM
BALKANSKI, M
TAYLOR, P
MASSOULIE, J
机构
[1] CTR RECH SERV SANTE ARMEES, UNITE BIOCHIM, F-38702 LA TRONCHE, FRANCE
[2] ECOLE NORM SUPER, NEUROBIOL LAB, F-75231 PARIS 05, FRANCE
[3] UNIV CALIF SAN DIEGO, DEPT PHARMACOL, LA JOLLA, CA 92093 USA
[4] SEMMELWEIS UNIV MED, INST BIOPHYS, H-1085 BUDAPEST 8, HUNGARY
关键词
RAMAN SPECTROSCOPY; ACETYLCHOLINESTERASE; BUTYRYLCHOLINESTERASE;
D O I
10.1016/0300-9084(91)90167-Y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report Raman spectra of various cholinesterases: lytic tetrameric forms (G4) obtained by tryptic digestion of asymmetric acetylcholinesterase (AChE) from Torpedo californica and Electrophorus electricus, a PI-PLC-treated dimeric form (G2) of AChE from T marmorata, and the soluble tetrameric form (G4) of butyrylcholinesterase (BuChE) from human plasma. The contribution of different types of secondary structure was estimated by analyzing the amide I band, using the method of Williams [1]. The spectra of cholinesterases in 10 mM Tris-HCl (pH 7.0) indicate the presence of both alpha-helices (about 50%) and beta-sheets (about 25%), together with 15% tums and 10% undefined structures. In 20 mM phosphate buffer (pH 7.0), the spectra indicated a smaller contribution of alpha-helical structure (about 35%) and an increased beta-sheet content (from 25 to 35%). This shows that the ionic milieu profoundly affects either the conformation of the protein (AChE activity is known to be sensitive to ionic strength), or the evaluation of secondary structure, or both. In addition, we analyzed vibrations corresponding to the side chains of aromatic and aliphatic amino acids. In particular, the analyses of the tyrosine doublet (830-850 cm-1) and of the tryptophan vibration at 880 cm-1 indicated that these residues are predominantly 'exposed' on the surface of the molecules.
引用
收藏
页码:1375 / 1386
页数:12
相关论文
共 64 条
[1]   QUANTITATIVE-ANALYSIS OF ELECTROPHORETOGRAMS - A MATHEMATICAL APPROACH TO SUPER-RESOLUTION [J].
AGARD, DA ;
STEINBERG, RA ;
STROUD, RM .
ANALYTICAL BIOCHEMISTRY, 1981, 111 (02) :257-268
[2]   RAMAN-SPECTROSCOPIC STUDY ON THE CONFORMATION OF 11-S FORM ACETYLCHOLINESTERASE FROM TORPEDO-CALIFORNICA [J].
ASLANIAN, D ;
GROF, P ;
NEGRERIE, M ;
BALKANSKI, M ;
TAYLOR, P .
FEBS LETTERS, 1987, 219 (01) :202-206
[3]  
ASLANIAN D, 1989, MOL PHYSICS CHEM BIO, V4, P233
[4]  
Bellamy L. J, 1975, INFRARED SPECTRA COM, V3rd
[5]   AN IMMUNOGLOBULIN-M MONOCLONAL-ANTIBODY, RECOGNIZING A SUBSET OF ACETYLCHOLINESTERASE MOLECULES FROM ELECTRIC ORGANS OF ELECTROPHORUS AND TORPEDO, BELONGS TO THE HNK-1 ANTI-CARBOHYDRATE FAMILY [J].
BON, S ;
MEFLAH, K ;
MUSSET, F ;
GRASSI, J ;
MASSOULIE, J .
JOURNAL OF NEUROCHEMISTRY, 1987, 49 (06) :1720-1731
[6]   LASER-EXCITED RAMAN-SPECTROSCOPY OF BIOMOLECULES .9. LASER RAMAN SPECTROSCOPIC STUDIES OF THERMAL UNFOLDING OF RIBONUCLEASE-A [J].
CHEN, MC ;
LORD, RC .
BIOCHEMISTRY, 1976, 15 (09) :1889-1897
[8]  
DUDAI Y, 1974, RES METHODS NEUROCHE, V3, P209
[9]   THERMAL INACTIVATION OF THE MOLECULAR-FORMS OF ACETYLCHOLINESTERASE AND BUTYRYLCHOLINESTERASE [J].
EDWARDS, JA ;
BRIMIJOIN, S .
BIOCHIMICA ET BIOPHYSICA ACTA, 1983, 742 (03) :509-516
[10]   A NEW AND RAPID COLORIMETRIC DETERMINATION OF ACETYLCHOLINESTERASE ACTIVITY [J].
ELLMAN, GL ;
COURTNEY, KD ;
ANDRES, V ;
FEATHERSTONE, RM .
BIOCHEMICAL PHARMACOLOGY, 1961, 7 (02) :88-&