LIE THEORY AND SEPARATION OF VARIABLES .11. EPD EQUATION

被引:19
作者
KALNINS, EG
MILLER, W
机构
[1] UNIV MONTREAL,CTR RECH MATH,MONTREAL 101,QUEBEC,CANADA
[2] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
D O I
10.1063/1.522902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:369 / 377
页数:9
相关论文
共 12 条
[1]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[2]  
ERDELYI A, 1953, HIGH TRANSCENDENTAL, V1
[3]   LIE THEORY AND SEPARATION OF VARIABLES .4. GROUPS SO(2,1) AND SO(3) [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (08) :1263-1274
[4]  
KALNINS EG, 1976, J MATH PHYS, V17, pR30
[5]  
MILLER W, 1974, SIAM J MATH ANAL, V5, P822
[6]   NONCOMPACT LIE ALGEBRAIC APPROACH TO UNITARY REPRESENTATIONS OF SU(1,1) - ROLE OF CONFLUENT HYPERGEOMETRIC EQUATION [J].
MONTGOMERY, W ;
ORAIFEAR.L .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (03) :380-382
[7]  
SALLY P, 1967, AMS69 AM MATH SOC ME
[8]  
Slater LJ., 1966, GENERALIZED HYPERGEO
[9]  
Titchmarsh E. C., 1962, EIGENFUNCTION EXPANS, V2nd
[10]   GENERATING FUNCTIONS FOR ULTRASPHERICAL FUNCTIONS [J].
VISWANATHAN, B .
CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (01) :120-+