SPECTRAL GALERKIN METHODS FOR THE PRIMARY 2-POINT BOUNDARY-VALUE PROBLEM IN MODELING VISCOELASTIC FLOWS

被引:75
作者
DAVIES, AR
KARAGEORGHIS, A
PHILLIPS, TN
机构
[1] Univ Coll of Wales, Aberystwyth, Wales, Univ Coll of Wales, Aberystwyth, Wales
关键词
D O I
10.1002/nme.1620260309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
10
引用
收藏
页码:647 / 662
页数:16
相关论文
共 10 条
[2]  
Crochet MJ, 1984, NUMERICAL SIMULATION
[3]  
DAVIS PJ, 1975, METHODS NUMERICAL IN
[4]  
Fox L., 1968, CHEBYSHEV POLYNOMIAL, V2nd
[5]  
GOTTLIEB D., 1977, CBMS NSF REGIONAL C, V26
[6]   STABILITY OF STEADY AND TIME-DEPENDENT PLANE POISEUILLE FLOW [J].
GROSCH, CE ;
SALWEN, H .
JOURNAL OF FLUID MECHANICS, 1968, 34 :177-&
[7]   HERMITIAN FINITE-ELEMENTS FOR CALCULATING VISCOELASTIC FLOW [J].
MARCHAL, JM ;
CROCHET, MJ .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1986, 20 :187-207
[8]   ACCURATE SOLUTION OF ORR-SOMMERFELD STABILITY EQUATION [J].
ORSZAG, SA .
JOURNAL OF FLUID MECHANICS, 1971, 50 (DEC29) :689-+
[9]   PRECONDITIONERS FOR THE SPECTRAL MULTIGRID METHOD [J].
PHILLIPS, TN ;
ZANG, TA ;
HUSSAINI, MY .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1986, 6 (03) :273-292
[10]  
Powell M. J. D., 1970, NUMERICAL METHODS NO