MINIMAL EQUATIONS FOR ANTIPHASE DYNAMICS IN MULTIMODE LASERS

被引:16
作者
ERNEUX, T
MANDEL, P
机构
[1] Optique Nonlinéaire Théorique, Université Libre de Bruxelles, 1050 Bruxelles, Campus Plaine
来源
PHYSICAL REVIEW A | 1995年 / 52卷 / 05期
关键词
D O I
10.1103/PhysRevA.52.4137
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider two models of multimode lasers: the Tang-Statz-deMars equations modeling a solid-state Fabry-Perot laser [C.L. Tang, H. Statz, and G. deMars, J. Appl. Phys. 34, 2289 (1963)] and the rate equations modeling intracavity second-harmonic generation in a Nd:YAG ring laser (where YAG denotes yttrium aluminum garnet). In both models, the dynamics is dominated by a global coupling of the modes of the electromagnetic field in the cavity. Although the equations for these two problems are fairly different, we prove that a dominant asymptotic approximation can be determined in each case that leads to the same conservative problem. It depends on one parameter, which measures the strength of the global coupling, and admits a class of antiphase periodic solutions.
引用
收藏
页码:4137 / 4144
页数:8
相关论文
共 24 条
[1]  
ABAAN N, 1994, OPT COMMUN, V112, P235
[2]  
ABRAHAM NB, 1994, P SOC PHOTO-OPT INS, V2095, P16, DOI 10.1117/12.183097
[3]   PONIES ON A MERRY-GO-ROUND IN LARGE ARRAYS OF JOSEPHSON-JUNCTIONS [J].
ARONSON, DG ;
GOLUBITSKY, M ;
MALLETPARET, J .
NONLINEARITY, 1991, 4 (03) :903-910
[4]   ANTIPHASE DYNAMICS AND POLARIZATION EFFECTS IN THE ND-DOPED FIBER LASER [J].
BIELAWSKI, S ;
DEROZIER, D ;
GLORIEUX, P .
PHYSICAL REVIEW A, 1992, 46 (05) :2811-2822
[5]   OSCILLATOR DEATH IN POPULATIONS OF ALL TO ALL COUPLED NONLINEAR OSCILLATORS [J].
ERMENTROUT, GB .
PHYSICA D, 1990, 41 (02) :219-231
[6]   INTERMITTENCY AND CHAOS IN INTRACAVITY DOUBLED LASERS .2. [J].
JAMES, GE ;
HARRELL, EM ;
ROY, R .
PHYSICAL REVIEW A, 1990, 41 (05) :2778-2790
[7]  
KERVOKIAN J, 1981, APPLIED MATH SCI, V34
[8]   DYNAMIC INDEPENDENCE OF PULSED ANTIPHASED MODES [J].
MANDEL, P ;
WANG, JY .
OPTICS LETTERS, 1994, 19 (08) :533-535
[9]   TRANSIENT AND MODULATION DYNAMICS OF A MULTIMODE FABRY-PEROT LASER [J].
MANDEL, P ;
GEORGIOU, M ;
OTSUKA, K ;
PIEROUX, D .
OPTICS COMMUNICATIONS, 1993, 100 (1-4) :341-350
[10]   PHASE-DIAGRAM FOR THE COLLECTIVE BEHAVIOR OF LIMIT-CYCLE OSCILLATORS [J].
MATTHEWS, PC ;
STROGATZ, SH .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1701-1704