BAYESIAN-ESTIMATION OF NORMAL OGIVE ITEM RESPONSE CURVES USING GIBBS SAMPLING

被引:197
作者
ALBERT, JH
机构
来源
JOURNAL OF EDUCATIONAL STATISTICS | 1992年 / 17卷 / 03期
关键词
DENSITY ESTIMATES; EM ALGORITHM; SIMULATION;
D O I
10.2307/1165149
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The problem of estimating item parameters from a two-parameter normal ogive model is considered. Gibbs sampling (Gelfand & Smith, 1990) is used to simulate draws from the joint posterior distribution of the ability and item parameters. This method gives marginal posterior density estimates for any parameter of interest; these density estimates can be used to judge the accuracy of normal approximations based on maximum likelihood estimates. This simulation technique is illustrated using data from a mathematics placement exam.
引用
收藏
页码:251 / 269
页数:19
相关论文
共 15 条