THE REGULARIZED PHASE-SPACE PATH INTEGRAL MEASURE FOR A SCALAR FIELD COUPLED TO GRAVITY

被引:27
作者
HATSUDA, M [1 ]
VANNIEUWENHUIZEN, P [1 ]
TROOST, W [1 ]
VANPROEYEN, A [1 ]
机构
[1] UNIV LOUVAIN,INST THEORET FYS,B-3030 LOUVAIN,BELGIUM
关键词
D O I
10.1016/0550-3213(90)90176-E
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The path integral measure for a scalar field coupled to gravity in phase space is examined by constructing regulators for the jacobians, and explicitly computing Einstein, Weyl and other anomalies. The anomalies in phase space are independent of the choice of path integral variables ("the measure") and this shows that one can simultaneously satisfy the requirements of unitarity and absence of Einstein anomalies. For the corresponding configuration space measures we find that different measures give different anomalies, but these anomalies are all related to each other by local counterterms. © 1990.
引用
收藏
页码:166 / 196
页数:31
相关论文
共 24 条
[1]  
Arnowitt R, 1962, GRAVITATION INTRO CU
[2]   CONSISTENT AND COVARIANT ANOMALIES IN GAUGE AND GRAVITATIONAL THEORIES [J].
BARDEEN, WA ;
ZUMINO, B .
NUCLEAR PHYSICS B, 1984, 244 (02) :421-453
[3]   CRITICAL DIMENSIONS OF THE N = 1 AND N = 2 SPINNING STRING DERIVED FROM FUJIKAWA APPROACH [J].
BOUWKNEGT, P ;
VANNIEUWENHUIZEN, P .
CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (02) :207-219
[4]   CURVED-SPACE TRACE, CHIRAL, AND EINSTEIN ANOMALIES FROM PATH-INTEGRALS, USING FLAT-SPACE PLANE-WAVES [J].
CERESOLE, A ;
PIZZOCHERO, P ;
VANNIEUWENHUIZEN, P .
PHYSICAL REVIEW D, 1989, 39 (06) :1567-1578
[5]   UNDERSTANDING FUJIKAWA REGULATORS FROM PAULI-VILLARS REGULARIZATION OF GHOST LOOPS [J].
DIAZ, A ;
TROOST, W ;
VANNIEUWENHUIZEN, P ;
VANPROEYEN, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (15) :3959-3982
[6]   THE THEORY OF GRAVITATION IN HAMILTONIAN FORM [J].
DIRAC, PAM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 246 (1246) :333-343
[7]  
Faddeev L., 1976, METHODS FIELD THEORY
[8]  
Faddeev L. D., 1974, SOV PHYS USP, V16, P777, DOI DOI 10.1070/PU1974V016N06ABEH004089
[9]   FEYNMAN DIAGRAMS FOR YANG-MILLS FIELD [J].
FADDEEV, LD ;
POPOV, VN .
PHYSICS LETTERS B, 1967, B 25 (01) :29-&
[10]  
FADDEEV LD, 1970, THEOR MATH PHYS, V1, P1