MULTIRESOLUTION PROPERTIES OF THE WAVELET GALERKIN OPERATOR

被引:25
作者
LAWTON, WM
机构
[1] Winchester, MA 01890
关键词
D O I
10.1063/1.529300
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper extends recent results by the author [J. Math. Phys. 31, 1898 (1990), J. Math. Phys. 32, 57 (1991)] that show a scaling parameter sequence h yields an orthonormal wavelet basis for L2(R) if and only if an associated operator S(h) has eigenvalue 1 with multiplicity 1. The operator transforms a sequence a by S(h) (a)(k) = 2-SIGMA-m,n Activated h(m)h(n)a(2k + m - n). A correspondence is derived between S(h) and Galerkin projection operators related to the multiresolution analysis defined by the orthonormal wavelet basis. The spectrum of S(h) is characterized in terms of the Fourier modulus of the (unique) scaling function phi that satisfies phi(x) = 2-SIGMA-n-h(n)phi(2x - n). This characterization yields several results including a direct, alternate proof that the eigenvalue 1 of S(h) has multiplicity 1.
引用
收藏
页码:1440 / 1443
页数:4
相关论文
共 25 条
[1]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[2]  
BEYLKIN G, 1991, IN PRESS SIAM J NUME
[3]  
Briggs W L, 1987, MULTIGRID TUTORIAL
[4]  
BURRUS CS, 1990, IN PRESS T ACOUST SP
[5]  
CAVARETTA AS, IN PRESS MAMS
[6]   WAVELETS, MULTISCALE ANALYSIS AND QUADRATURE MIRROR FILTERS [J].
COHEN, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :439-459
[7]  
COHEN A, 1990, P C SIGNAL PROCESS
[8]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[9]  
DAUBECHIES I, IN PRESS SIAM J MATH
[10]  
GIOPINATH RA, 1991, 1991 ICASSP TOR