AN ALGEBRA RELATED TO THE FUSION RULES OF WESS-ZUMINO-WITTEN MODELS

被引:24
作者
HAYASHI, T
机构
[1] Department of Mathematics, School of Science, Nagoya University, Nagoya, 464, Furocho, Chikusa-ku
关键词
AMS subject classification (1991): 16W30;
D O I
10.1007/BF00405604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new family of examples of 'quantum groups'. Its irreducible representations are indexed by level l dominant integral weights of affine Lie algebra sl(n), and their branching rules with respect to the 'truncated tensor product' XBAR is given by the fusion rules of SU(n)l-Wess-Zumino-Witten model in conformal field theory.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 15 条
[1]  
Abe A] Eiichi, 1980, CAMBRIDGE TRACTS MAT, V74
[2]  
[Anonymous], UNPUB
[3]  
DRINFELD V, 1968, P ICM BERKELEY, P798
[4]   STRING THEORY ON GROUP-MANIFOLDS [J].
GEPNER, D ;
WITTEN, E .
NUCLEAR PHYSICS B, 1986, 278 (03) :493-549
[5]   LITTLEWOOD-RICHARDSON COEFFICIENTS FOR HECKE ALGEBRAS AT ROOTS OF UNITY [J].
GOODMAN, FM ;
WENZL, H .
ADVANCES IN MATHEMATICS, 1990, 82 (02) :244-265
[6]   FUSION ALGEBRAS IN INTEGRABLE SYSTEMS IN 2 DIMENSIONS [J].
GOODMAN, FM ;
NAKANISHI, T .
PHYSICS LETTERS B, 1991, 262 (2-3) :259-264
[7]   SOLVABLE LATTICE MODELS WHOSE STATES ARE DOMINANT INTEGRAL WEIGHTS OF A(1)N-1 [J].
JIMBO, M ;
MIWA, T ;
OKADO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1987, 14 (02) :123-131
[8]  
Kac V. G., 1990, INFINITE DIMENSIONAL
[9]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[10]   YANG-BAXTER EQUATION AND REPRESENTATION-THEORY .1. [J].
KULISH, PP ;
RESHETIKHIN, NY ;
SKLYANIN, EK .
LETTERS IN MATHEMATICAL PHYSICS, 1981, 5 (05) :393-403