GROUP-VELOCITY INTERPRETATION OF THE STABILITY THEORY OF GUSTAFSSON, KREISS, AND SUNDSTROM

被引:56
作者
TREFETHEN, LN [1 ]
机构
[1] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
关键词
D O I
10.1016/0021-9991(83)90123-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:199 / 217
页数:19
相关论文
共 18 条
[1]   STABILITY OF 2-DIMENSIONAL INITIAL BOUNDARY-VALUE PROBLEMS USING LEAP-FROG TYPE SCHEMES [J].
ABARBANEL, S ;
GOTTLIEB, D .
MATHEMATICS OF COMPUTATION, 1979, 33 (148) :1145-1155
[2]  
ABARBANEL S, 1981, P S NUMERICAL BOUNDA
[3]  
BEAM R, 1981, P S NUMERICAL BOUNDA
[4]  
Brillouin L, 1960, WAVE PROPAGATION GRO, DOI DOI 10.1063/1.3057398
[5]  
Brillouin L., 1953, WAVE PROPAGATION PER
[6]   MESH REFINEMENT [J].
BROWNING, G ;
KREISS, HO ;
OLIGER, J .
MATHEMATICS OF COMPUTATION, 1973, 27 (121) :29-39
[7]  
COUGHRAN W, 1980, THESIS STANFORD U ST
[8]   INSTABILITY OF LEAP-FROG AND CRANK-NICOLSON APPROXIMATIONS OF A NONLINEAR PARTIAL DIFFERENTIAL EQUATION [J].
FORNBERG, B .
MATHEMATICS OF COMPUTATION, 1973, 27 (121) :45-57
[9]  
GOLDBERG M, 1981, MATH COMPUT, V36, P603, DOI 10.1090/S0025-5718-1981-0606519-9
[10]  
GUSTAFSSON B, 1972, MATH COMPUT, V26, P649, DOI 10.1090/S0025-5718-1972-0341888-3