BI-HAMILTONIAN STRUCTURE OF AN INTEGRABLE HENON-HEILES SYSTEM

被引:17
作者
CABOZ, R [1 ]
RAVOSON, V [1 ]
GAVRILOV, L [1 ]
机构
[1] BULGARIAN ACAD SCI,INST MATH,BU-1090 SOFIA,BULGARIA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 10期
关键词
D O I
10.1088/0305-4470/24/10/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By making use of the system of coordinates in which the separation of the variables in the Hamilton-Jacobi equation takes place, we find a bi-Hamiltonian structure of a two degrees of freedom Hamiltonian system corresponding to the integrable Henon-Heiles Hamiltonian H = 1/2(p(q)2 + p2(2) + Aq1(2) + Bq2(2)) - q1(2)q2 - 2q2(3).
引用
收藏
页码:L523 / L525
页数:3
相关论文
共 5 条
[1]   THE COMPLETE WHITTAKER THEOREM FOR TWO-DIMENSIONAL INTEGRABLE SYSTEMS AND ITS APPLICATION [J].
ANKIEWICZ, A ;
PASK, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18) :4203-4208
[2]  
Arnold VI, 1990, DYNAMICAL SYSTEMS
[3]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[4]  
DORFMAN IY, 1982, FUNCT ANAL APPL, V16, P241
[5]   SEPARABILITY OF AN INTEGRABLE CASE OF THE HENON-HEILES SYSTEM [J].
WOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1984, 100 (06) :277-278