BALLISTIC ANNIHILATION KINETICS - THE CASE OF DISCRETE VELOCITY DISTRIBUTIONS

被引:37
作者
KRAPIVSKY, PL
REDNER, S
LEYVRAZ, F
机构
[1] BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215
[2] UNIV NACL AUTONOMA MEXICO,INST FIS,CUERNAVACA LAB,MEXICO CITY 01000,DF,MEXICO
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.51.3977
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The kinetics of the annihilation process A+A→O/ with ballistic particle motion is investigated when the distribution of particle velocities is discrete. This discreteness is the source of many intriguing phenomena. In the mean field limit, the densities of different velocity species decay in time with different power law rates for many initial conditions. For a one-dimensional symmetric system containing particles with velocity 0 and ±1, there is a particular initial state for which the concentrations of all three species decay as t-2/3, where t is the time. For the case of a fast ''impurity'' in a symmetric background of + and - particles, the impurity survival probability decays as exp(-const×ln2t). In a symmetric four-velocity system in which there are particles with velocities ±v1 and ±v2, there again is a special initial condition where the two species decay at the same rate t-α, with α0.72. Efficient algorithms are introduced to perform the large-scale simulations necessary to observe these unusual phenomena clearly. © 1995 The American Physical Society.
引用
收藏
页码:3977 / 3987
页数:11
相关论文
共 12 条
  • [1] Abramowitz M., 1964, HDB MATH FUNCTIONS
  • [2] DECAY KINETICS OF BALLISTIC ANNIHILATION
    BENNAIM, E
    REDNER, S
    LEYVRAZ, F
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (12) : 1890 - 1893
  • [3] BENNAIM E, COMMUNICATION
  • [4] DROZ M, IN PRESS PHYS REV E
  • [5] ANNIHILATION KINETICS IN THE ONE-DIMENSIONAL IDEAL-GAS
    ELSKENS, Y
    FRISCH, HL
    [J]. PHYSICAL REVIEW A, 1985, 31 (06): : 3812 - 3816
  • [6] Feller W., 1968, INTRO PROBABILITY TH
  • [7] KINETICS OF HETEROGENEOUS SINGLE-SPECIES ANNIHILATION
    KRAPIVSKY, PL
    BENNAIM, E
    REDNER, S
    [J]. PHYSICAL REVIEW E, 1994, 50 (04): : 2474 - 2481
  • [8] UNIVERSALITY CLASSES FOR DETERMINISTIC SURFACE GROWTH
    KRUG, J
    SPOHN, H
    [J]. PHYSICAL REVIEW A, 1988, 38 (08): : 4271 - 4283
  • [9] PIASECKI J, PHYS REV E, V51
  • [10] Press W., 1986, NUMERICAL RECIPES FO