LOWER BOUNDS FOR PLANAR ORTHOGONAL DRAWINGS OF GRAPHS

被引:22
作者
TAMASSIA, R [1 ]
TOLLIS, IG [1 ]
VITTER, JS [1 ]
机构
[1] UNIV TEXAS,DEPT COMP,RICHARDSON,TX 75083
基金
美国国家科学基金会;
关键词
COMPUTATIONAL GEOMETRY; PLANAR EMBEDDING; VLSI LAYOUT; ORTHOGONAL DRAWING; BENDS;
D O I
10.1016/0020-0190(91)90059-Q
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study planar orthogonal drawings of graphs and provide lower bounds on the number of bends along the edges. We exhibit graphs on n vertices that require-OMEGA(n) bends in any layout, and show that there exist optimal drawings that require-OMEGA(n) bends and have all of them on a single edge of length-OMEGA(n2). This work finds applications in VLSI layout, aesthetic graph drawing, and communication by light or microwave.
引用
收藏
页码:35 / 40
页数:6
相关论文
共 10 条
[1]  
DOLEV D, 1984, ADV COMPUTING RES, V2, P147
[2]  
EADES P, 1989, CS8908 BROWN U DEP C
[3]  
EADES P, 1991, IN PRESS NETWORKS
[4]  
KHULLER S, 1990, UNPUB LATTICE STRUCT
[5]   ON MINIMAL-NODE-COST PLANAR EMBEDDINGS [J].
STORER, JA .
NETWORKS, 1984, 14 (02) :181-212
[6]   PLANAR GRID EMBEDDING IN LINEAR TIME [J].
TAMASSIA, R ;
TOLLIS, IG .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1989, 36 (09) :1230-1234
[7]   ON EMBEDDING A GRAPH IN THE GRID WITH THE MINIMUM NUMBER OF BENDS [J].
TAMASSIA, R .
SIAM JOURNAL ON COMPUTING, 1987, 16 (03) :421-444
[8]  
TAMASSIA R, 1990, UNPUB PARALLEL CONST
[9]  
Tarjan R.E, 1983, CBMS NSF REGIONAL C, V44
[10]   AMORTIZED COMPUTATIONAL-COMPLEXITY [J].
TARJAN, RE .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (02) :306-318