The present paper analyzes the influence of major histocompatibility complex (MHC) class II (Ir) genes on MHC class II-restricted T-cell responses to West Nile virus (WNV) and recombinant vaccinia virus-derived Kunjin virus antigens and identifies the immunodominant Kunjin virus antigens. Generally, mice were primed by intravenous infection with WNV or Kunjin virus, and their CD4+ T cells were stimulated in vitro 14 days later with WNV or Kunjin virus antigens to pulse macrophage or B-cell antigen-presenting cells (APC). WNV-specific in vitro T-cell responses from H-2b mice were higher than those from H-2d, H-2k, and H-2q mice. When recombinant vaccinia virus-derived Kunjin virus antigen preparations were tested in vitro, Kunjin virus-immune T cells of H-2b haplotype responded most strongly to structural (prM, C, E) and membrane-associated nonstructural (NS1) proteins encoded by VK-V 1031 and showed weaker responses to cytosolic nonstructural protein NS5 (VKV 1022), whereas the responders of H-2k haplotype responded most strongly to the antigens encoded by VKV 1022 and gave lesser responses to VK-V 1031. H-2d T cells gave weaker responses than either H-2b or H-2k cells, with responses to VKV 1031 generally being higher than those to VKV 1022. Responses to VKV 1023 or VK-V 1024 encoding all of the NS3 to NS5 gene sequence or to VKV 1023 encoding all of NS3 were weak or absent. Within a given inbred strain, B cells and macrophages differed in their abilities to present recombinant vaccinia virus-derived Kunjin virus antigens, both in terms of magnitude of T-cell responses induced and the particular Kunjin virus protein presented. T cells from different non-MHC genetic backgrounds varied in their requirements of macrophage numbers as APC for maximum reactivity, suggesting that the concentration of class II MHC antigens and other molecules affecting APC-T-cell interaction varied in mice with different genetic backgrounds. Regardless of MHC haplotype, responses to VKV 1024, which encompasses VK-V 1023 and VKV 1022, were either absent or lower than those to VK-V 1022, possibly reflecting differences in the processing requirements of these two proteins. When mice were primed intravenously with recombinant vaccinia virus and when their CD4+ T cells were stimulated in vitro with native Kunjin virus antigens, VK-V 1031 primed more efficiently than Kunjin virus and VK-V 1022 primed similarly to Kunjin virus.