DIMENSION OF THE CARRIER OF TURBULENCE - INTERMITTENCY IN FLUID-MECHANICS

被引:6
作者
CONSTANTIN, P
PROCACCIA, I
机构
[1] NIELS BOHR INST, DK-2100 COPENHAGEN, DENMARK
[2] NORDITA, DK-2100 COPENHAGEN, DENMARK
[3] WEIZMANN INST SCI, DEPT CHEM PHYS, IL-76100 REHOVOT, ISRAEL
关键词
D O I
10.1103/PhysRevA.46.4736
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The multifractal model of turbulence assumes a concentration of the field of vorticity magnitude on a set of dimension smaller than 3. We examine the mechanism for the exponential growth of the vorticity magnitude, and estimate the fractal dimenison of its level sets on the basis of the equations of fluid mechanics. We propose a model of multifractal turbulence in which there is a connection between the fractal dimension of the level sets and the information dimension D1 of the carrier of the field of vorticity magnitude. Under the stated conditions we can estimate the dimension D1 and evaluate, within the framework of the multifractal model of turbulence, the values of the scaling exponents of velocity and temperature structure functions. We find exponents that are consistent with the available experimental information and which differ from the ones obtained by the Kolmogorov dimensional analysis.
引用
收藏
页码:4736 / 4741
页数:6
相关论文
共 27 条
[1]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[2]   TEMPERATURE STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANTONIA, RA ;
HOPFINGER, EJ ;
GAGNE, Y ;
ANSELMET, F .
PHYSICAL REVIEW A, 1984, 30 (05) :2704-2707
[3]   THE NATURE OF TUBULENT MOTION AT LARGE WAVE-NUMBERS [J].
BATCHELOR, GK ;
TOWNSEND, AA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1949, 199 (1057) :238-255
[4]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[5]  
Billingsley P., 1965, ERGODIC THEORY INFOR
[6]   NAVIER-STOKES EQUATIONS AND AREA OF INTERFACES [J].
CONSTANTIN, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (02) :241-266
[7]   FRACTAL GEOMETRY OF ISOSCALAR SURFACES IN TURBULENCE - THEORY AND EXPERIMENTS [J].
CONSTANTIN, P ;
PROCACCIA, I ;
SREENIVASAN, KR .
PHYSICAL REVIEW LETTERS, 1991, 67 (13) :1739-1742
[8]  
CONSTANTIN P, UNPUB
[9]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[10]  
Federer H., 2014, GEOMETRIC MEASURE TH