PULSATILE NON-NEWTONIAN FLOW CHARACTERISTICS IN A 3-DIMENSIONAL HUMAN CAROTID BIFURCATION MODEL

被引:208
作者
PERKTOLD, K [1 ]
RESCH, M [1 ]
FLORIAN, H [1 ]
机构
[1] GRAZ TECH UNIV,INST MATH,A-8010 GRAZ,AUSTRIA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 1991年 / 113卷 / 04期
关键词
D O I
10.1115/1.2895428
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Numerical analysis of flow phenomena and wall shear stresses in the human carotid artery bifurcation has been carried out using a three-dimensional geometrical model. The primary aim of this study is the detailed discussion of non-Newtonian flow velocity and wall shear stress during the pulse cycle. A comparison of non-Newtonian and Newtonian results is also presented. The applied non-Newtonian behavior of blood is based on measured dynamic viscosity. In the foreground of discussion are the flow characteristics in the carotid sinus. The investigation shows complex flow patterns especially in the carotid sinus where flow separation occurs at the outer wall throughout the systolic deceleration phase. The changing sign of the velocity near the outer sinus wall results in oscillating shear stress during the pulse cycle. At the outer wall of the sinus at maximum diameter level the shear stress ranges from - 1.92 N/m2 to 1.22 N/m2 with a time-averaged value of 0.04 N/m2. At the inner wall of the sinus at maximum diameter level the shear stress range is from 1.6 N/m2 to 4.18 N/m2 with a mean of 1.97 N/m2. The comparison of non-Newtonian and Newtonian results indicates unchanged flow phenomena and rather minor differences in the basic flow characteristics.
引用
收藏
页码:464 / 475
页数:12
相关论文
共 30 条
[1]   STEADY FLOW IN A MODEL OF THE HUMAN CAROTID BIFURCATION .2. LASER-DOPPLER ANEMOMETER MEASUREMENTS [J].
BHARADVAJ, BK ;
MABON, RF ;
GIDDENS, DP .
JOURNAL OF BIOMECHANICS, 1982, 15 (05) :363-378
[2]   STEADY FLOW IN A MODEL OF THE HUMAN CAROTID BIFURCATION .1. FLOW VISUALIZATION [J].
BHARADVAJ, BK ;
MABON, RF ;
GIDDENS, DP .
JOURNAL OF BIOMECHANICS, 1982, 15 (05) :349-362
[3]   ATHEROMA AND ARTERIAL WALL SHEAR - OBSERVATION, CORRELATION AND PROPOSAL OF A SHEAR DEPENDENT MASS TRANSFER MECHANISM FOR ALTHEROGENESIS [J].
CARO, CG ;
FITZGERA.JM ;
SCHROTER, RC .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1971, 177 (1046) :109-+
[4]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[5]  
DONEA J, 1981, COMPUTATIONAL TECHNI, P97
[6]   ARTERIAL GEOMETRY AFFECTS HEMODYNAMICS - A POTENTIAL RISK FACTOR FOR ATHEROSCLEROSIS [J].
FRIEDMAN, MH ;
DETERS, OJ ;
MARK, FF ;
BARGERON, CB ;
HUTCHINS, GM .
ATHEROSCLEROSIS, 1983, 46 (02) :225-231
[7]  
FUNG YC, 1981, BIOMECHANICS
[8]   A MODIFIED FINITE-ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT, INCOMPRESSIBLE NAVIER-STOKES EQUATIONS .1. THEORY [J].
GRESHO, PM ;
CHAN, ST ;
LEE, RL ;
UPSON, CD .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1984, 4 (06) :557-598
[9]  
HILBERT D, 1987, NUMERICAL METHODS, P423
[10]  
HILBERT D, 1987, THESIS TU GRAZ