EMBEDDINGS AND DELAYS AS DERIVED FROM QUANTIFICATION OF RECURRENCE PLOTS

被引:817
作者
ZBILUT, JP [1 ]
WEBBER, CL [1 ]
机构
[1] LOYOLA UNIV,MED CTR,DEPT PHYSIOL,MAYWOOD,IL 60153
关键词
D O I
10.1016/0375-9601(92)90426-M
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recurrence plots have been advocated as a useful diagnostic tool for the assessment of dynamical time series. We extend the usefulness of this tool by quantifying certain features of these plots which may be helpful in determining embeddings and delays.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 14 条
[1]  
BARUCHI H, 1976, LECT NOTES MATH, V503, P235
[2]  
Berge P., 1991, ORDER CHAOS
[3]   RECURRENCE PLOTS OF DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D .
EUROPHYSICS LETTERS, 1987, 4 (09) :973-977
[4]   FUNDAMENTAL LIMITATIONS FOR ESTIMATING DIMENSIONS AND LYAPUNOV EXPONENTS IN DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
RUELLE, D .
PHYSICA D, 1992, 56 (2-3) :185-187
[5]  
FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2
[6]   DIMENSION MEASUREMENT ON HIGH-DIMENSIONAL SYSTEMS [J].
GERSHENFELD, NA .
PHYSICA D, 1992, 55 (1-2) :135-154
[7]   NONLINEAR TIME SEQUENCE ANALYSIS [J].
Grassberger, Peter ;
Schreiber, Thomas ;
Schaffrath, Carsten .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :521-547
[8]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[9]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[10]  
2