ADH2 EXPRESSION IS REPRESSED BY REG1 INDEPENDENTLY OF MUTATIONS THAT ALTER THE PHOSPHORYLATION OF THE YEAST TRANSCRIPTION FACTOR ADR1

被引:42
作者
DOMBEK, KM
CAMIER, S
YOUNG, ET
机构
关键词
D O I
10.1128/MCB.13.7.4391
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, expression of the ADH2 gene is undetectable during growth on glucose. The transcription factor ADR1 is required to fully activate expression when glucose becomes depleted. Partial activation during growth on glucose occurred in cells carrying a constitutive allele of ADR1 in which the phosphorylatable serine of a cyclic AMP (cAMP)-dependent protein kinase phosphorylation site had been changed to alanine. When glucose was removed from the growth medium, a substantial increase in the level of this constitutive expression was observed for both the ADH2 gene and a reporter construct containing the ADR1 binding site. This suggests that glucose can block ADR1-mediated activation independently of cAMP-dependent phosphorylation at serine 230. REG1/HEX2/SRN1 was identified as a potential serine 230-independent repressor of ADH2 expression. Yeast strains carrying a deletion of the REG1 gene, reg1-1966, showed a large increase in ADR1-dependent expression of ADH2 during growth on glucose. A smaller increase in ADR1-independent expression was also observed. Additionally, an increase in the level of ADR1 expression and posttranslational modification of the ADR1 protein were observed. When the reg1-1966 allele was combined with various ADR1 constitutive alleles, the level of ADH2 expression was synergistically elevated. This indicates that REG1 can act independently of phosphorylation at serine 230. Our results suggest that glucose repression in the presence of ADR1 constitutive alleles occurs primarily through a REG1-dependent pathway which appears to affect ADH2 transcription at multiple levels.
引用
收藏
页码:4391 / 4399
页数:9
相关论文
共 56 条
[1]   ABSENCE OF GLUCOSE-INDUCED CAMP SIGNALING IN THE SACCHAROMYCES-CEREVISIAE MUTANTS CAT1 AND CAT3 WHICH ARE DEFICIENT IN DEREPRESSION OF GLUCOSE-REPRESSIBLE PROTEINS [J].
ARGUELLES, JC ;
MBONYI, K ;
VANAELST, L ;
VANHALEWYN, M ;
JANS, AWH ;
THEVELEIN, JM .
ARCHIVES OF MICROBIOLOGY, 1990, 154 (02) :199-205
[2]  
Ausubel F, 1988, CURRENT PROTOCOLS MO
[3]   CHARACTERIZATION OF A REGULATORY REGION UPSTREAM OF THE ADR2 LOCUS OF S-CEREVISIAE [J].
BEIER, DR ;
YOUNG, ET .
NATURE, 1982, 300 (5894) :724-728
[4]   STUDIES ON THE MECHANISM OF THE GLUCOSE-INDUCED CAMP SIGNAL IN GLYCOLYSIS AND GLUCOSE REPRESSION MUTANTS OF THE YEAST SACCHAROMYCES-CEREVISIAE [J].
BEULLENS, M ;
MBONYI, K ;
GEERTS, L ;
GLADINES, D ;
DETREMERIE, K ;
JANS, AWH ;
THEVELEIN, JM .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1988, 172 (01) :227-231
[5]   HIGH-AFFINITY GLUCOSE-TRANSPORT IN SACCHAROMYCES-CEREVISIAE IS UNDER GENERAL GLUCOSE REPRESSION CONTROL [J].
BISSON, LF .
JOURNAL OF BACTERIOLOGY, 1988, 170 (10) :4838-4845
[6]   REGULATION OF EXPRESSION AND ACTIVITY OF THE YEAST TRANSCRIPTION FACTOR ADR1 [J].
BLUMBERG, H ;
HARTSHORNE, TA ;
YOUNG, ET .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (05) :1868-1876
[7]  
BLUMBERG H, 1987, THESIS U WASHINGTON
[8]   CHARACTERIZATION OF SACCHAROMYCES-CEREVISIAE GENES ENCODING SUBUNITS OF CYCLIC AMP-DEPENDENT PROTEIN-KINASE [J].
CANNON, JF ;
TATCHELL, K .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2653-2663
[9]   A YEAST GENE THAT IS ESSENTIAL FOR RELEASE FROM GLUCOSE REPRESSION ENCODES A PROTEIN-KINASE [J].
CELENZA, JL ;
CARLSON, M .
SCIENCE, 1986, 233 (4769) :1175-1180
[10]   CYCLIC-AMP DEPENDENT PROTEIN-KINASE PHOSPHORYLATES AND INACTIVATES THE YEAST TRANSCRIPTIONAL ACTIVATOR ADR1 [J].
CHERRY, JR ;
JOHNSON, TR ;
DOLLARD, C ;
SHUSTER, JR ;
DENIS, CL .
CELL, 1989, 56 (03) :409-419