ROBUST REGULATION WITH H(2) PERFORMANCE

被引:8
作者
ABEDOR, J [1 ]
NAGPAL, K [1 ]
POOLLA, K [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MECH ENGN,BERKELEY,CA 94720
基金
美国国家科学基金会;
关键词
ROBUST REGULATION; INTERNAL MODEL; H(2)-LQG; LQR; MULTIOBJECTIVE;
D O I
10.1016/0167-6911(94)90097-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of minimizing the H-2 norm of a feedback system subject to the constraint that the controller robustly regulate against constants and sinusoids. We show that, for any epsilon > 0, there exists a controller that both achieves robust regulation and renders the closed-loop H2 norm within epsilon of the optimal norm (the norm achievable without the robust regulation constraint). We also provide conditions that are both necessary and sufficient for there to exist a robustly regulating controller that achieves the optimal H2 norm. All proofs are constructive.
引用
收藏
页码:431 / 443
页数:13
相关论文
共 15 条
[1]  
ABEDOR J, 1992, 31ST P IEE C DEC CON, P2002
[2]  
ABEDOR J, UNPUB IEEE T AUTOMAT
[3]  
ABEDOR J, 1993, BCCI931 U CAL DEP ME
[4]   OUTPUT REGULATION AND INTERNAL MODELS - A FREQUENCY-DOMAIN APPROACH [J].
BENGTSSON, G .
AUTOMATICA, 1977, 13 (04) :333-345
[5]  
CHENG L, 1978, IEEE T AUTOMAT CONTR, V23, P3, DOI 10.1109/TAC.1978.1101694
[6]   ROBUST CONTROL OF A GENERAL SERVOMECHANISM PROBLEM - SERVO COMPENSATOR [J].
DAVISON, EJ ;
GOLDENBERG, A .
AUTOMATICA, 1975, 11 (05) :461-471
[7]   ROBUST CONTROL OF A SERVOMECHANISM PROBLEM FOR LINEAR TIME-INVARIANT MULTIVARIABLE SYSTEMS [J].
DAVISON, EJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (01) :25-34
[9]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[10]   ALGEBRAIC AND TOPOLOGICAL ASPECTS OF THE REGULATOR PROBLEM FOR LUMPED LINEAR-SYSTEMS [J].
FRANCIS, BA ;
VIDYASAGAR, M .
AUTOMATICA, 1983, 19 (01) :87-90