IDENTIFICATION OF A REGULATORY MOTIF IN HSP70 THAT AFFECTS ATPASE ACTIVITY, SUBSTRATE-BINDING AND INTERACTION WITH HDJ-1

被引:381
作者
FREEMAN, BC [1 ]
MYERS, MP [1 ]
SCHUMACHER, R [1 ]
MORIMOTO, RI [1 ]
机构
[1] NORTHWESTERN UNIV, DEPT BIOCHEM MOLEC BIOL & CELL BIOL, EVANSTON, IL 60208 USA
关键词
CHAPERONES; HSP70; PROTEIN FOLDING;
D O I
10.1002/j.1460-2075.1995.tb07222.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Hsp70 family of molecular chaperones has an essential role in the synthesis, folding and translocation of the nascent peptide chain. While the general features of these activities are well documented, less is understood about the regulation of these activities. The ATPase rate is stimulated by non-native proteins, furthermore, interaction with ATP leads to the release of protein substrate concurrent with a conformational change in Hsp70. One interpretation of these data is that the two domains of Hsp70 interact. In the process of mapping the carboxyl-terminal boundary of the substrate binding domain for human Hsp70, we identified a regulatory motif, EEVD, which is conserved at the extreme carboxyl terminus among nearly all cloned cytosolic eukaryotic Hsp70s. Deletion or mutation of EEVD affects the ATPase activity, the ability to interact with substrates, and interferes with the ability of the mutant Hsp70 to interact with HDJ-1 in the refolding of denatured firefly luciferase. Examination of the biophysical properties of the mutant Hsp70s reveals a change in the overall shape and conformation of the protein consistent with reduced interactions between the two domains. These data suggest that the EEVD motif is involved in the intramolecular regulation of Hsp70 function and intermolecular interactions with HDJ-1.
引用
收藏
页码:2281 / 2292
页数:12
相关论文
共 60 条
[1]   THE HUMAN HEAT-SHOCK PROTEIN HSP70 INTERACTS WITH HSF, THE TRANSCRIPTION FACTOR THAT REGULATES HEAT-SHOCK GENE-EXPRESSION [J].
ABRAVAYA, K ;
MYERS, MP ;
MURPHY, SP ;
MORIMOTO, RI .
GENES & DEVELOPMENT, 1992, 6 (07) :1153-1164
[2]   INTERACTION OF HSP-70 WITH NEWLY SYNTHESIZED PROTEINS - IMPLICATIONS FOR PROTEIN FOLDING AND ASSEMBLY [J].
BECKMANN, RP ;
MIZZEN, LA ;
WELCH, WJ .
SCIENCE, 1990, 248 (4957) :850-854
[3]   CLONING AND SUBCELLULAR-LOCALIZATION OF HUMAN MITOCHONDRIAL HSP70 [J].
BHATTACHARYYA, T ;
KARNEZIS, AN ;
MURPHY, SP ;
HOANG, T ;
FREEMAN, BC ;
PHILLIPS, B ;
MORIMOTO, RI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1705-1710
[4]   DEVELOPMENTAL CONTROL OF THE HEAT-SHOCK RESPONSE IN XENOPUS [J].
BIENZ, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (10) :3138-3142
[5]   RELATIONSHIP BETWEEN GLUCOCORTICOID RECEPTOR STEROID-BINDING CAPACITY AND ASSOCIATION OF THE MR 90,000 HEAT-SHOCK PROTEIN WITH THE UNLIGANDED RECEPTOR [J].
BRESNICK, EH ;
SANCHEZ, ER ;
PRATT, WB .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1988, 30 (1-6) :267-269
[6]   A CONSERVED LOOP IN THE ATPASE DOMAIN OF THE DNAK CHAPERONE IS ESSENTIAL FOR STABLE BINDING OF GRPE [J].
BUCHBERGER, A ;
SCHRODER, H ;
BUTTNER, M ;
VALENCIA, A ;
BUKAU, B .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (02) :95-101
[7]   MUTATIONS ALTERING HEAT-SHOCK SPECIFIC SUBUNIT OF RNA-POLYMERASE SUPPRESS MAJOR CELLULAR DEFECTS OF ESCHERICHIA-COLI MUTANTS LACKING THE DNAK CHAPERONE [J].
BUKAU, B ;
WALKER, GC .
EMBO JOURNAL, 1990, 9 (12) :4027-4036
[8]   EUKARYOTIC HOMOLOGS OF ESCHERICHIA-COLI DNAJ - A DIVERSE PROTEIN FAMILY THAT FUNCTIONS WITH HSP70 STRESS PROTEINS [J].
CAPLAN, AJ ;
CYR, DM ;
DOUGLAS, MG .
MOLECULAR BIOLOGY OF THE CELL, 1993, 4 (06) :555-563
[9]  
CHAPPELL TG, 1987, J BIOL CHEM, V262, P746
[10]   A ROLE FOR A 70-KILODATON HEAT-SHOCK PROTEIN IN LYSOSOMAL DEGRADATION OF INTRACELLULAR PROTEINS [J].
CHIANG, HL ;
TERLECKY, SR ;
PLANT, CP ;
DICE, JF .
SCIENCE, 1989, 246 (4928) :382-385