LOCAL REFINEMENT TECHNIQUES FOR ELLIPTIC PROBLEMS ON CELL-CENTERED GRIDS .1. ERROR ANALYSIS

被引:84
作者
EWING, RE
LAZAROV, RD
VASSILEVSKI, PS
机构
[1] BULGARIAN ACAD SCI,INST MATH,BU-1113 SOFIA,BULGARIA
[2] BULGARIAN ACAD SCI,CTR INFORMAT & COMP TECHNOL,BU-1113 SOFIA,BULGARIA
关键词
CELL-CENTERED GRID; LOCAL REFINEMENT; ERROR ESTIMATES; ELLIPTIC PROBLEMS OF DIVERGENCE TYPE;
D O I
10.2307/2008390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite difference technique on rectangular cell-centered grids with local refinement is proposed in order to derive discretizations of second-order elliptic equations of divergence type approximating the so-called balance equation. Error estimates in a discrete H-1-norm are derived of order h1/2 for a simple symmetric scheme, and of order h3/2 for both a nonsymmetric and a more accurate symmetric one, provided that the solution belongs to H-1+alpha for alpha > 1/2 and alpha > 3/2, respectively.
引用
收藏
页码:437 / 461
页数:25
相关论文
共 21 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]   A GENERALIZED CONJUGATE-GRADIENT, LEAST-SQUARE METHOD [J].
AXELSSON, O .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :209-227
[3]  
Axelsson O, 1984, COMPUTER SCI APPL MA
[4]  
Aziz K., 1979, PETROLEUM RESERVOIR
[5]   BOUNDS FOR A CLASS OF LINEAR FUNCTIONALS WITH APPLICATIONS TO HERMITE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :362-&
[6]   A PRECONDITIONING TECHNIQUE FOR THE EFFICIENT SOLUTION OF PROBLEMS WITH LOCAL GRID REFINEMENT [J].
BRAMBLE, JH ;
EWING, RE ;
PASCIAK, JE ;
SCHATZ, AH .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 67 (02) :149-159
[7]   EFFICIENT ADAPTIVE PROCEDURES FOR FLUID-FLOW APPLICATIONS [J].
EWING, RE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 55 (1-2) :89-103
[8]  
EWING RE, 1988, MAY SPE ROCK MOUNT R
[9]  
KREISS HO, 1986, MATH COMPUT, V47, P537, DOI 10.1090/S0025-5718-1986-0856701-5
[10]  
MANTEUFFEL TA, 1986, MATH COMPUT, V47, P511, DOI 10.1090/S0025-5718-1986-0856700-3