THE FERMAT-WEBER PROBLEM AND INNER-PRODUCT SPACES

被引:13
作者
DURIER, R
机构
[1] Université de Bourgogne, Laboratoire d’Analyse Numérique, 21004 Dijon Cédex
关键词
D O I
10.1006/jath.1994.1070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the setting of real normed spaces, we study the Fermat-Weber problem which deals with the minimization of the sum of weighted distances from a variable point to the points of a given finite set A. With techniques of best approximation we obtain a description of the set of solutions to this problem. Then we characterize inner product spaces as spaces in which the set of solutions to such problems meets the affine hull of A. The major tool is a characterization of inner product spaces, with finite dimension at least three, lying on some property of the exposed points of the unit ball. (C) 1994 Academic Press, Inc.
引用
收藏
页码:161 / 173
页数:13
相关论文
共 14 条
[1]  
AMIR D, 1986, CHARACTERIZATIONS IN
[2]   STRONGLY EXPOSED POINTS IN WEAKLY COMPACT CONVEX-SETS IN BANACH-SPACES [J].
BOURGAIN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) :197-200
[3]  
Chakerian G.D., 1985, GEOM DEDICATA, V17, P227
[4]  
Cieslik D., 1988, Optimization, V19, P485, DOI 10.1080/02331938808843367
[5]   GEOMETRICAL PROPERTIES OF THE FERMAT-WEBER PROBLEM [J].
DURIER, R ;
MICHELOT, C .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 20 (03) :332-343
[6]  
GARKAVI A, 1974, MAT SBORNIK, V95, P267
[7]  
GARKAVI A. L., 1964, USPEKHI MAT NAUK USS, V19, P139
[8]   INNER PRODUCTS IN NORMED LINEAR SPACES [J].
JAMES, RC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (06) :559-566
[9]   SHARPER APPROXIMATION OF EXTREME-POINTS BY FAR POINTS [J].
KLEE, V .
ARCHIV DER MATHEMATIK, 1993, 60 (04) :383-388
[10]  
Klee V., 1960, MATH SCAND, V8, P363