DEGRADATION OF INTRAENDOSOMAL INSULIN BY INSULIN-DEGRADING ENZYME WITHOUT ACIDIFICATION

被引:82
作者
HAMEL, FG
MAHONEY, MJ
DUCKWORTH, WC
机构
[1] UNIV NEBRASKA,MED CTR,DEPT PHARMACOL,OMAHA,NE 68105
[2] VET AFFAIRS MED CTR,OMAHA,NE
关键词
D O I
10.2337/diabetes.40.4.436
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The nature of insulin degradation within endosomes was studied in vitro. Radiolabeled insulin was perfused into rat liver via the portal vein, and insulin-containing endosomes were prepared by differential centrifugation. The endosomes were incubated in various buffers, and hormone degradation was monitored by Sephadex G-50 chromatography and high-performance liquid chromatography (HPLC). Endosomes incubated in simple imidazole or HEPES (pH 7.4) buffers rapidly degraded insulin to intermediate- and then to low-molecular-weight products that were lost from the vesicles. HPLC analysis of insulin-sized material showed the products to be the same as those produced by intact cells. The endosomes did not acidify in these buffers (as assessed by the acridine orange method), and ATP had no effects. When the endosomes were incubated in a chloride-containing buffer, degradation was greatly inhibited, and acidification did not occur. Both insulin degradation and acidification were activated when Mg-ATP was added to this buffer system. HPLC analysis of the products generated in this system revealed not only typical cellular products but additional less hydrophobic products. Western-blot analysis of endosomal protein with anti-insulin-degrading enzyme antibody showed this enzyme to be present. In conclusion, isolated endosomes rapidly and completely degrade insulin through products that are typical of cellular degradation without requiring acidification. Chloride-containing buffers inhibit endosomal degradation, which is reversed by Mg-ATP, but this system does not mimic cellular degradation. At least one of the enzymes responsible for insulin degradation is insulin-degrading enzyme.
引用
收藏
页码:436 / 443
页数:8
相关论文
共 39 条
[1]   A VIEW OF ACIDIC INTRACELLULAR COMPARTMENTS [J].
ANDERSON, RGW ;
ORCI, L .
JOURNAL OF CELL BIOLOGY, 1988, 106 (03) :539-543
[2]  
BERGERON JJM, 1985, ANNU REV PHYSIOL, V47, P383
[3]   ROLE OF HEPATOCYTE PLASMA-MEMBRANE IN INSULIN DEGRADATION [J].
BLACKARD, WG ;
LUDEMAN, C ;
STILLMAN, J .
AMERICAN JOURNAL OF PHYSIOLOGY, 1985, 248 (02) :E194-E202
[4]  
CARDELLI JA, 1989, J BIOL CHEM, V264, P3454
[5]  
CARO JF, 1982, J BIOL CHEM, V257, P8459
[6]  
CLARKE BL, 1987, J BIOL CHEM, V262, P17384
[7]  
DIMENT S, 1989, J BIOL CHEM, V264, P13403
[8]  
DIMENT S, 1985, J BIOL CHEM, V260, P5311
[9]   SELECTIVE DEGRADATION OF INSULIN WITHIN RAT-LIVER ENDOSOMES [J].
DOHERTY, JJ ;
KAY, DG ;
LAI, WH ;
POSNER, BI ;
BERGERON, JJM .
JOURNAL OF CELL BIOLOGY, 1990, 110 (01) :35-42
[10]  
DOHERTY JJ, 1988, DIABETES S1, V37, pA2