HYBRID EXPONENTIAL PRODUCT-FORMULAS FOR UNBOUNDED OPERATORS WITH POSSIBLE APPLICATIONS TO MONTE-CARLO SIMULATIONS

被引:105
作者
SUZUKI, M
机构
[1] Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113
关键词
D O I
10.1016/0375-9601(95)00266-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some new schemes of exponential product formulas are proposed together with a basic theorem. A typical hybrid fourth-order product formula is given by exp[-x(A + B)] = S-a(x/3)Q(x)S-b(x/3)Q(x)S-a(x/3)+O(x(5)) = Q(x)S-a(x/3)S-b(x/3)S-a(x/3)Q(x) + O(x(5)), where S-a(x) = e(-xA/2)e(-xB)e(-xA/2), S-b(x) = e(-xB/2)e(-xA)e(-xB/2), and Q(x) = exp(-1/2(x/6)(3)[B,[A, B]]).
引用
收藏
页码:425 / 428
页数:4
相关论文
共 27 条
[1]  
[Anonymous], 1993, QUANTUM MONTE CARLO
[2]   IMPROVED EXPONENTIAL SPLIT OPERATOR METHOD FOR SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
BANDRAUK, AD ;
SHEN, H .
CHEMICAL PHYSICS LETTERS, 1991, 176 (05) :428-432
[3]  
De Raedt H., 1994, Computers in Physics, V8, P600, DOI 10.1063/1.168483
[4]  
DERAEDT H, 1986, PHYS REP, V127, P233
[5]  
KALOS MH, 1982, MONTE CARLO METHODS
[6]  
Kato T., 1966, PERTURBATION THEORY
[7]  
Magnus W., 1976, COMBINATORIAL GROUP
[10]   MONTE-CARLO SIMULATION OF QUANTUM SPIN SYSTEMS .1. [J].
SUZUKI, M ;
MIYASHITA, S ;
KURODA, A .
PROGRESS OF THEORETICAL PHYSICS, 1977, 58 (05) :1377-1387