What limits the performance of current invasive brain machine interfaces?

被引:44
作者
Baranauskas, Gytis [1 ]
机构
[1] Lithuanian Univ Hlth Sci, Neurosci Inst, Neurophysiol Lab, Eiveniu g. 4, LT-50009 Kaunas, Lithuania
关键词
brain machine interface; brain computer interface; extracellular recordings; information; throughput; multichannel recordings;
D O I
10.3389/fnsys.2014.00068
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The concept of a brain-machine interface (BMI) or a computer-brain interface is simple: BMI creates a communication pathway for a direct control by brain of an external device. In reality BMIs are very complex devices and only recently the increase in computing power of microprocessors enabled a boom in BMI research that continues almost unabated to this date, the high point being the insertion of electrode arrays into the brains of 5 human patients in a clinical trial run by Cyberkinetics with few other clinical tests still in progress. Meanwhile several EEG-based BMI devices (non-invasive BMIs) were launched commercially. Modern electronics and dry electrode technology made possible to drive the cost of some of these devices below few hundred dollars. However, the initial excitement of the direct control by brain waves of a computer or other equipment is dampened by large efforts required for learning, high error rates and slow response speed. All these problems are directly related to low information transfer rates typical for such EEG-based BMIs. In invasive BMIs employing multiple electrodes inserted into the brain one may expect much higher information transfer rates than in EEG-based BMIs because, in theory, each electrode provides an independent information channel. However, although invasive BMIs require more expensive equipment and have ethical problems related to the need to insert electrodes in the live brain, such financial and ethical costs are often not offset by a dramatic improvement in the information transfer rate. Thus the main topic of this review is why in invasive BMIs an apparently much larger information content obtained with multiple extracellular electrodes does not translate into much higher rates of information transfer? This paper explores possible answers to this question by concluding that more research on what movement parameters are encoded by neurons in motor cortex is needed before we can enjoy the next generation BMIs.
引用
收藏
页数:10
相关论文
共 76 条
[1]   State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements [J].
Aggarwal, Vikram ;
Mollazadeh, Mohsen ;
Davidson, Adam G. ;
Schieber, Marc H. ;
Thakor, Nitish V. .
JOURNAL OF NEUROPHYSIOLOGY, 2013, 109 (12) :3067-3081
[2]  
Allison BZ., 2012, PRACTICAL BRAIN COMP
[3]   Selecting the signals for a brain-machine interface [J].
Andersen, RA ;
Musallam, S ;
Pesaran, B .
CURRENT OPINION IN NEUROBIOLOGY, 2004, 14 (06) :720-726
[4]  
Brown P. F., 1992, Computational Linguistics, V18, P31
[5]   Does the 'P300' speller depend on eye gaze? [J].
Brunner, P. ;
Joshi, S. ;
Briskin, S. ;
Wolpaw, J. R. ;
Bischof, H. ;
Schalk, G. .
JOURNAL OF NEURAL ENGINEERING, 2010, 7 (05)
[6]   The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes [J].
Buzsaki, Gyoergy ;
Anastassiou, Costas A. ;
Koch, Christof .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (06) :407-420
[7]   Learning to control a brain-machine interface for reaching and grasping by primates [J].
Carmena, JM ;
Lebedev, MA ;
Crist, RE ;
O'Doherty, JE ;
Santucci, DM ;
Dimitrov, DF ;
Patil, PG ;
Henriquez, CS ;
Nicolelis, MAL .
PLOS BIOLOGY, 2003, 1 (02) :193-208
[8]   Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex [J].
Chapin, JK ;
Moxon, KA ;
Markowitz, RS ;
Nicolelis, MAL .
NATURE NEUROSCIENCE, 1999, 2 (07) :664-670
[9]   A cautionary tale of two statistics: Partial correlation and standardized partial regression [J].
Cramer, D .
JOURNAL OF PSYCHOLOGY, 2003, 137 (05) :507-511
[10]   Bilateral and Unilateral Cochlear Implant Users Compared on Speech Perception in Noise [J].
Dunn, Camille C. ;
Noble, William ;
Tyler, Richard S. ;
Kordus, Monika ;
Gantz, Bruce J. ;
Ji, Haihong .
EAR AND HEARING, 2010, 31 (02) :296-298