ANTIMONOTONICITY - INEVITABLE REVERSALS OF PERIOD-DOUBLING CASCADES

被引:150
作者
DAWSON, SP
GREBOGI, C
YORKE, JA
KAN, I
KOCAK, H
机构
[1] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[2] GEORGE MASON UNIV,DEPT MATH SCI,FAIRFAX,VA 22030
[3] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
[4] UNIV MIAMI,DEPT MATH & COMP SCI,CORAL GABLES,FL 33124
基金
美国国家科学基金会;
关键词
D O I
10.1016/0375-9601(92)90442-O
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In many common nonlinear dynamical systems depending on a parameter, it is shown that periodic orbit creating cascades must be accompanied by periodic orbit annihilating cascades as the parameter is varied. Moreover, reversals from a periodic orbit creating cascade to a periodic orbit annihilating one must occur infinitely often in the vicinity of certain common parameter values. It is also demonstrated that these inevitable reversals are indeed observable in specific chaotic systems.
引用
收藏
页码:249 / 254
页数:6
相关论文
共 24 条
[1]   WHY PERIOD-DOUBLING CASCADES OCCUR - PERIODIC ORBIT CREATION FOLLOWED BY STABILITY SHEDDING [J].
ALLIGOOD, KT ;
YORKE, ED ;
YORKE, JA .
PHYSICA D, 1987, 28 (1-2) :197-205
[2]   EXPERIMENTAL-EVIDENCE OF SUB-HARMONIC BIFURCATIONS, MULTISTABILITY, AND TURBULENCE IN A Q-SWITCHED GAS-LASER [J].
ARECCHI, FT ;
MEUCCI, R ;
PUCCIONI, G ;
TREDICCE, J .
PHYSICAL REVIEW LETTERS, 1982, 49 (17) :1217-1220
[3]   MULTIPLICITY IN A CHEMICAL-REACTION WITH ONE-DIMENSIONAL DYNAMICS [J].
COFFMAN, K ;
MCCORMICK, WD ;
SWINNEY, HL .
PHYSICAL REVIEW LETTERS, 1986, 56 (10) :999-1002
[4]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[5]   ANALYSIS OF FLOW HYSTERESIS BY A ONE-DIMENSIONAL MAP [J].
FRASER, S ;
KAPRAL, R .
PHYSICAL REVIEW A, 1982, 25 (06) :3223-3233
[6]   TRANSITION TO CHAOTIC BEHAVIOR VIA A REPRODUCIBLE SEQUENCE OF PERIOD-DOUBLING BIFURCATIONS [J].
GIGLIO, M ;
MUSAZZI, S ;
PERINI, U .
PHYSICAL REVIEW LETTERS, 1981, 47 (04) :243-246
[7]  
GOLLUB JP, 1980, ANN NY ACAD SCI, V357, P22
[8]   EXACTLY SOLVABLE MODEL OF A PHYSICAL SYSTEM EXHIBITING MULTIDIMENSIONAL CHAOTIC BEHAVIOR [J].
HUNT, ER ;
ROLLINS, RW .
PHYSICAL REVIEW A, 1984, 29 (02) :1000-1002
[9]   ANTIMONOTONICITY - CONCURRENT CREATION AND ANNIHILATION OF PERIODIC-ORBITS [J].
KAN, I ;
YORKE, JA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 23 (02) :469-476
[10]  
KAN I, IN PRESS ANN MATH