LARGE CLAIMS APPROXIMATIONS FOR RISK PROCESSES IN A MARKOVIAN ENVIRONMENT

被引:30
作者
ASMUSSEN, S
HENRIKSEN, LF
KLUPPELBERG, C
机构
[1] ETH ZURICH,DEPT MATH,CH-8092 ZURICH,SWITZERLAND
[2] INST ELECTR SYST,DK-9220 AALBORG O,DENMARK
[3] ANDERSEN CONSULTING,DK-1159 COPENHAGEN O,DENMARK
关键词
RISK PROCESS; MARKOV PROCESS; ASYMPTOTIC RUIN PROBABILITY; NON-CRAMER CASE; SUBEXPONENTIAL DISTRIBUTIONS;
D O I
10.1016/0304-4149(93)00003-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let psi(i)(u) be the probability of ruin for a risk process which has initial reserve u and evolves in a finite Markovian environment E with initial state i. Then the arrival intensity is beta(j) and the claim size distribution is B-j when the environment is in state j is an element of E. Assuming that there is a subset of E for which the B-j satisfy, as x --> infinity that 1 - B-j(x) similar to b(j)(1 - H(x)); i.e. (1 - B-j(x))/(1 - H(x)) --> b(j) is an element of (0, infinity), for some probability distribution H whose tail is a subexponential density, and 1 - B-j(x) = o(1 - H(x)) for the remaining B-j, it is shown that psi(i)(u) similar to c(i) integral(u)(infinity) (1 - H(x)) dx for some explicit constant c(i). By time-reversion, similar results hold for the tail of the waiting time in a Markov-modulated M/G/1 queue whenever the service times satisfy similar conditions.
引用
收藏
页码:29 / 43
页数:15
相关论文
共 26 条
[1]  
ABATE J, 1994, IN PRESS QUEUEING SY
[2]   RISK THEORY IN A PERIODIC ENVIRONMENT - THE CRAMER-LUNDBERG APPROXIMATION AND LUNDBERG INEQUALITY [J].
ASMUSSEN, S ;
ROLSKI, T .
MATHEMATICS OF OPERATIONS RESEARCH, 1994, 19 (02) :410-433
[3]   LADDER HEIGHTS AND THE MARKOV-MODULATED M/G/1 QUEUE [J].
ASMUSSEN, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1991, 37 (02) :313-326
[4]  
ASMUSSEN S, RUIN PROBABILITIES
[5]  
Asmussen S, 1991, INSUR MATH ECON, V10, P259
[6]  
Athreya K.B., 1972, BRANCHING PROCESSES, DOI [DOI 10.1007/978-3-642-65371-1, 10.1007/978-3-642-65371-1]
[7]  
Bingham NH., 1989, REGULAR VARIATION
[8]  
BJORK T, 1988, SCAND ACTUAR J, P77
[9]  
CLINE DBH, 1986, PROBAB THEORY REL, V72, P529, DOI 10.1007/BF00344720
[10]  
Cohen JW, 1982, SINGLE SERVER QUEUE, V2nd, DOI DOI 10.1016/B978-0-444-85452-0.50002-X