PRODUCT WAVE-FUNCTION RENORMALIZATION-GROUP

被引:100
作者
NISHINO, T [1 ]
OKUNISHI, K [1 ]
机构
[1] OSAKA UNIV, GRAD SCH SCI, DEPT PHYS, TOYONAKA, OSAKA 560, JAPAN
关键词
RENORMALIZATION GROUP; DENSITY MATRIX; VARIATIONAL METHOD;
D O I
10.1143/JPSJ.64.4084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a fast numerical renormalization group method-the product wave function renormalization group (PWFRG) method - for 1D quantum lattice models and 2D classical ones. A variational wave function, which is expressed as a matrix product, is improved through a self-consistent calculation. The new method has the same fixed point as the density matrix renormalization group method.
引用
收藏
页码:4084 / 4087
页数:4
相关论文
共 14 条
[1]   DIMERS ON A RECTANGULAR LATTICE [J].
BAXTER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (04) :650-&
[2]  
BAXTER RJ, 1980, EXACTLY SOLVED MODEL, P363
[3]  
BURKHARDT T, 1982, TOPICS CURRENT PHYSI, V30
[4]   ITERATIVE CALCULATION OF A FEW OF LOWEST EIGENVALUES AND CORRESPONDING EIGENVECTORS OF LARGE REAL-SYMMETRIC MATRICES [J].
DAVIDSON, ER .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :87-94
[5]   DAVIDSON ALGORITHM WITH AND WITHOUT PERTURBATION CORRECTIONS [J].
KALAMBOUKIS, TZ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (01) :57-62
[6]   DENSITY-MATRIX RENORMALIZATION-GROUP METHOD FOR 2D CLASSICAL-MODELS [J].
NISHINO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (10) :3598-3601
[7]  
NISHINO T, PREPRINT
[8]   CORRELATIONS IN A 2-CHAIN HUBBARD-MODEL [J].
NOACK, RM ;
WHITE, SR ;
SCALAPINO, DJ .
PHYSICAL REVIEW LETTERS, 1994, 73 (06) :882-885
[9]  
OSTLUND S, PREPRINT
[10]   MIGDAL-KADANOFF RENORMALIZATION-GROUP APPROACH TO THE SPIN-1/2 ANISOTROPIC HEISENBERG-MODEL [J].
TAKANO, H ;
SUZUKI, M .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (04) :635-663