NONPERTURBATIVE SOLUTION OF MATRIX MODELS MODIFIED BY TRACE-SQUARED TERMS

被引:50
作者
KLEBANOV, IR
HASHIMOTO, A
机构
[1] Joseph Henry Laboratories, Princeton University, Princeton
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(94)00518-J
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a non-perturbative solution of large N matrix models modified by terms of the form g(Tr Phi(4))(2), which add microscopic wormholes to the random surface geometry. For g < g(t) the sum over surfaces is in the same universality class as the g = 0 theory, and the string susceptibility exponent is reproduced by the conventional Liouville interaction similar to e(alpha+phi). For g = g(t) we find a different universality class, and the string susceptibility exponent agrees for any genus with Liouville theory where the interaction term is dressed by the other branch, e(alpha-phi). This allows us to define a double-scaling limit of the g = g(t) theory. We also consider matrix models modified by terms of the form gO(2), where O is a scaling operator. A fine-tuning of g produces a change in this operator's gravitational dimension which is, again, in accord with the change in the branch of the Liouville dressing.
引用
收藏
页码:264 / 282
页数:19
相关论文
共 38 条
[1]   GEOMETRY OF A 2-DIMENSIONAL QUANTUM-GRAVITY - NUMERICAL STUDY [J].
AGISHTEIN, ME ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1991, 350 (03) :690-728
[2]   A PROPOSAL FOR STRINGS AT D-GREATER-THAN-1 [J].
ALVAREZGAUME, L ;
BARBON, JLF ;
CRNKOVIC, C .
NUCLEAR PHYSICS B, 1993, 394 (02) :383-422
[3]   A SOLVABLE 2D-GRAVITY MODEL WITH GAMMA-GREATER-THAN-0 [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
MODERN PHYSICS LETTERS A, 1994, 9 (13) :1221-1228
[4]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[5]  
AMBJORN J, NBIHE9331 PREPR
[6]   PARTITION-FUNCTIONS AND PHYSICAL STATES IN 2-DIMENSIONAL QUANTUM-GRAVITY AND SUPERGRAVITY [J].
BERSHADSKY, M ;
KLEBANOV, IR .
NUCLEAR PHYSICS B, 1991, 360 (2-3) :559-585
[7]   GENUS-ONE PATH INTEGRAL IN 2-DIMENSIONAL QUANTUM-GRAVITY [J].
BERSHADSKY, M ;
KLEBANOV, IR .
PHYSICAL REVIEW LETTERS, 1990, 65 (25) :3088-3091
[8]   THE ISING-MODEL ON A RANDOM PLANAR LATTICE - THE STRUCTURE OF THE PHASE-TRANSITION AND THE EXACT CRITICAL EXPONENTS [J].
BOULATOV, DV ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1987, 186 (3-4) :379-384
[9]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[10]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150