LOW-TEMPERATURE SERIES FOR THE CORRELATION LENGTH IN THE D=3 ISING-MODEL

被引:24
作者
ARISUE, H [1 ]
TABATA, K [1 ]
机构
[1] OSAKA INST TECHNOL, KUSHIRO JR COLL, ASAHI KU, OSAKA 535, JAPAN
关键词
D O I
10.1016/0550-3213(94)00548-S
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We extend low-temperature series for the second moment of the correlation function in the d = 3 simple-cubic Ising model from u(15) to u(26) using the finite-lattice method, and combining with the series for the susceptibility we obtain the low-temperature series for the second-moment correlation length to u(23). A, analysis of the obtained series by inhomogeneous differential approximants gives the critical exponents 2 nu' + gamma' = 2.509(38) and 2 nu' = 1.247(19).
引用
收藏
页码:555 / 566
页数:12
相关论文
共 31 条
[1]   CRITICAL-TEMPERATURES OF THE D=3, S=1/2 ISING-MODEL - THE EFFECT OF CONFLUENT CORRECTIONS TO SCALING [J].
ADLER, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15) :3585-3599
[2]   STRONG-COUPLING EXPANSION OF THE MASS GAP FOR Z(2) LATTICE GAUGE-THEORY IN 3 DIMENSIONS [J].
ARISUE, H ;
TABATA, K .
PHYSICS LETTERS B, 1994, 322 (03) :224-226
[3]   HIGH-ORDER CALCULATION OF THE STRONG COUPLING EXPANSION FOR THE MASS GAP IN LATTICE GAUGE-THEORY [J].
ARISUE, H ;
FUJIWARA, T .
NUCLEAR PHYSICS B, 1987, 285 (02) :253-263
[4]   STRONG-COUPLING EXPANSION OF STRING TENSION FOR Z(2) LATTICE GAUGE-THEORY IN 3 DIMENSIONS [J].
ARISUE, H .
PHYSICS LETTERS B, 1993, 313 (1-2) :187-190
[5]   NEW CLUSTER-EXPANSION METHOD IN LATTICE GAUGE-THEORY [J].
ARISUE, H ;
FUJIWARA, T .
PROGRESS OF THEORETICAL PHYSICS, 1984, 72 (06) :1176-1196
[6]   STRONG-COUPLING SERIES OF STRING TENSION AND MASS GAP IN LATTICE GAUGE-THEORY [J].
ARISUE, H .
NUCLEAR PHYSICS B, 1994, :240-242
[7]  
ARISUE H, 1985, RIFP588 PREPR
[8]   MONTE-CARLO RENORMALIZATION-GROUP STUDY OF THE 3-DIMENSIONAL ISING-MODEL [J].
BAILLIE, CF ;
GUPTA, R ;
HAWICK, KA ;
PAWLEY, GS .
PHYSICAL REVIEW B, 1992, 45 (18) :10438-10453
[9]   LOW-TEMPERATURE EXPANSION FOR THE ISING-MODEL [J].
BHANOT, G ;
CREUTZ, M ;
LACKI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1841-1844
[10]   A NUMERICAL-METHOD TO COMPUTE EXACTLY THE PARTITION-FUNCTION WITH APPLICATION TO Z(N) THEORIES IN 2 DIMENSIONS [J].
BHANOT, G .
JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (1-2) :55-75