WHEN DO SOBOLEV SPACES FORM A HILBERT SCALE

被引:28
作者
NEUBAUER, A [1 ]
机构
[1] UNIV CINCINNATI,DEPT MATH SCI,CINCINNATI,OH 45221
关键词
D O I
10.2307/2047179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:557 / 562
页数:6
相关论文
共 10 条
[1]  
Engl H.W., 1985, CONSTRUCTIVE METHODS, P120
[2]   CONVERGENCE-RATES FOR TIKHONOV REGULARIZATION IN FINITE-DIMENSIONAL SUBSPACES OF HILBERT SCALES [J].
ENGL, HW ;
NEUBAUER, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (03) :587-592
[3]  
Grisvard P., 1985, MONOGRAPHS STUDIES M, V24
[4]  
Krein S. G., 1966, RUSS MATH SURV, V21, P85, DOI 10.1070/RM1966v021n02ABEH004151
[5]  
Lions J.L., 1972, NONHOMOGENEOUS BOUND, V1
[6]   REGULARIZATION WITH DIFFERENTIAL-OPERATORS .2. WEAK LEAST-SQUARES FINITE-ELEMENT SOLUTIONS TO 1ST KIND INTEGRAL-EQUATIONS [J].
LOCKER, J ;
PRENTER, PM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) :247-267
[7]   REGULARIZATION WITH DIFFERENTIAL-OPERATORS .1. GENERAL-THEORY [J].
LOCKER, J ;
PRENTER, PM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 74 (02) :504-529
[8]  
Naimark M. A., 1968, LINEAR DIFFERENTIAL
[9]   ERROR-BOUNDS FOR TIKHONOV REGULARIZATION IN HILBERT SCALES [J].
NATTERER, F .
APPLICABLE ANALYSIS, 1984, 18 (1-2) :29-37
[10]  
NEUBAUER A, IN PRESS SIAM J NUME