AN OVER-RELAXATION METHOD FOR THE ITERATIVE SOLUTION OF INTEGRAL-EQUATIONS IN SCATTERING PROBLEMS

被引:16
作者
KLEINMAN, RE
ROACH, GF
SCHUETZ, LS
SHIRRON, J
VANDENBERG, PM
机构
[1] UNIV STRATHCLYDE,DEPT MATH,GLASGOW G1 1XH,SCOTLAND
[2] USN,RES LAB,DIV ACOUST,WASHINGTON,DC 20375
[3] DELFT UNIV TECHNOL,DEPT ELECT ENGN,ELECTROMAGNET RES LAB,DELFT,NETHERLANDS
基金
美国国家科学基金会;
关键词
D O I
10.1016/0165-2125(90)90036-4
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A simple iterative method for solving many of the integral equations arising in scattering problems is presented. By introducing a relaxation parameter the equation is changed to one which may be solved as a Neumann series. An explicit choice of the relaxation parameter is proposed which does not require detailed knowledge of the spectrum nor does the method require the symmetrization of the, in general, non-selfadjoint integral operators that occur. Convergence of the method is demonstrated in examples where the Neumann series for the original equation either diverges or converges at a much lower rate. © 1990.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 20 条
[1]   ITERATIVE BEHANDLUNG LINEARER FUNKTIONALGLEICHUNGEN [J].
BIALY, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1959, 4 (02) :166-176
[3]  
BROWDER FE, 1966, B AM MATH SOC, V72, P566, DOI 10.1090/S0002-9904-1966-11543-4
[4]  
CHERTOCK G, 1968, Q APPL MATH, V26, P269
[5]  
COURANT R, 1953, METHODS MATH PHYSICS, V1, P140
[6]  
Fridman V. M., 1956, USP MAT NAUK, VXI, P233
[7]  
HELLINGER E, 1927, ENCY MATH WISSENSCHA, P1335
[8]   ITERATIVE METHODS FOR BEST APPROXIMATE SOLUTIONS OF LINEAR INTEGRAL-EQUATIONS OF FIRST AND SECOND KINDS [J].
KAMMERER, WJ ;
NASHED, MZ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (03) :547-573
[9]   AN ITERATIVE SOLUTION TO ACOUSTIC SCATTERING BY RIGID OBJECTS [J].
KLEINMAN, RE ;
ROACH, GF ;
SCHUETZ, LS ;
SHIRRON, J .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1988, 84 (01) :385-391
[10]   ITERATIVE SOLUTIONS OF BOUNDARY INTEGRAL-EQUATIONS IN ACOUSTICS [J].
KLEINMAN, RE ;
ROACH, GF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1988, 417 (1852) :45-57