LINEAR-ANALYSIS OF NATURALLY CURVED AND TWISTED ANISOTROPIC BEAMS

被引:65
作者
BORRI, M
GHIRINGHELLI, GL
MERLINI, T
机构
[1] Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, 20133 Milan
来源
COMPOSITES ENGINEERING | 1992年 / 2卷 / 5-7期
关键词
D O I
10.1016/0961-9526(92)90036-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this paper is to present a consistent theory for the deformation of a naturally curved and twisted anisotropic beam. The proposed formulation naturally extends the classical Saint-Venant approach to the case of curved, twisted anisotropic beams. The mathematical model developed under the assumption of span-wise uniform cross-section, curvature and twist, can take into account any kind of elastic coupling due to the material properties and the curved geometry. The consistency of the math-model presented and its generality about the cross-sectional shape make it a useful tool in a preliminary design optimization context such as, for example, the aeroelastic tailoring of helicopter rotor blades. Obviously one of the main problems remains the identification of the elastic properties needed when modeling composite beams. Some simple examples are given in order to determine the feasibility of the method.
引用
收藏
页码:433 / 456
页数:24
相关论文
共 35 条
[1]  
ATILGAN AR, 1990, AIAA J, V29, P1990
[2]  
ATILGAN AR, 1991, APPL MECH REV, V44, pS9
[3]   LARGE DISPLACEMENT ANALYSIS OF NATURALLY CURVED AND TWISTED COMPOSITE BEAMS [J].
BAUCHAU, OA ;
HONG, CH .
AIAA JOURNAL, 1987, 25 (11) :1469-1475
[4]   NONLINEAR COMPOSITE BEAM THEORY [J].
BAUCHAU, OA ;
HONG, CH .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1988, 55 (01) :156-163
[5]   A BEAM THEORY FOR ANISOTROPIC MATERIALS [J].
BAUCHAU, OA .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1985, 52 (02) :416-422
[6]  
BERDICHEVSKII VL, 1981, PMM-J APPL MATH MEC+, V45, P518, DOI 10.1016/0021-8928(81)90097-6
[7]   ON THE THEORY OF CURVILINEAR TIMOSHENKO-TYPE RODS. [J].
Berdichevskii, V.L. ;
Starosel'skii, L.A. .
Journal of Applied Mathematics and Mechanics, 1983, 47 (06) :809-817
[8]  
Borri M., 1986, Meccanica, V21, P30, DOI 10.1007/BF01556314
[9]  
Borri M., 1985, AEROTECNICA MISSILI, V64, P143
[10]   A BEAM FINITE-ELEMENT NON-LINEAR THEORY WITH FINITE ROTATIONS [J].
CARDONA, A ;
GERADIN, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (11) :2403-2438