3-PARTICLE QUARTIC-POWER DYNAMICS - AN INTEGRABLE MODEL

被引:6
作者
FISCHER, F
机构
[1] Physikalisches Institut, Universität Münster
关键词
D O I
10.1016/0375-9601(93)90418-Y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A periodical chain of n equal particles coupled by a pure quartic-power potential was found to contain self-localized anharmonic modes. It is shown that for n = 3 the system is integrable and separable. The missing constant of motion turns out to be a kind of quasi-momentum that makes the localization move along the chain.
引用
收藏
页码:417 / 422
页数:6
相关论文
共 15 条
[1]   COMPUTER-SIMULATION OF INTRINSIC LOCALIZED MODES IN ONE-DIMENSIONAL AND 2-DIMENSIONAL ANHARMONIC LATTICES [J].
BURLAKOV, VM ;
KISELEV, SA ;
PYRKOV, VN .
PHYSICAL REVIEW B, 1990, 42 (08) :4921-4927
[2]  
FISCHER F, 1993, ANN PHYSIK, V2, P294
[3]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[4]   TODA LATTICE .2. INVERSE-SCATTERING SOLUTION [J].
FLASCHKA, H .
PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (03) :703-716
[5]   INTEGRABILITY OF TODA LATTICE [J].
FORD, J ;
STODDARD, SD ;
TURNER, JS .
PROGRESS OF THEORETICAL PHYSICS, 1973, 50 (05) :1547-1560
[6]   INTEGRALS OF TODA LATTICE [J].
HENON, M .
PHYSICAL REVIEW B, 1974, 9 (04) :1921-1923
[7]   STATIONARY VIBRATIONAL-MODES OF A CHAIN OF PARTICLES INTERACTING VIA AN EVEN ORDER POTENTIAL [J].
KISELEV, SA .
PHYSICS LETTERS A, 1990, 148 (1-2) :95-97
[8]   ASYMPTOTIC SOLUTIONS FOR LOCALIZED VIBRATIONAL-MODES IN STRONGLY ANHARMONIC PERIODIC-SYSTEMS [J].
PAGE, JB .
PHYSICAL REVIEW B, 1990, 41 (11) :7835-7838
[9]   STABILITY AND MOTION OF INTRINSIC LOCALIZED MODES IN NONLINEAR PERIODIC LATTICES [J].
SANDUSKY, KW ;
PAGE, JB ;
SCHMIDT, KE .
PHYSICAL REVIEW B, 1992, 46 (10) :6161-6168
[10]   WHO CARES ABOUT INTEGRABILITY [J].
SEGUR, H .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 51 (1-3) :343-359