TRIANGULATING POLYGONS WITHOUT LARGE ANGLES

被引:14
作者
BERN, M
DOBKIN, D
EPPSTEIN, D
机构
[1] XEROX CORP,PALO ALTO RES CTR,PALO ALTO,CA 94304
[2] PRINCETON UNIV,DEPT COMP SCI,PRINCETON,NJ 08544
[3] UNIV CALIF IRVINE,DEPT INFORMAT & COMP SCI,IRVINE,CA 92717
关键词
COMPUTATIONAL GEOMETRY; MESH GENERATION; TRIANGULATION; ANGLE CONDITION;
D O I
10.1142/S0218195995000106
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show how to triangulate polygonal regions-adding extra vertices as necessary-with triangles of guaranteed quality. Using only O(n) triangles, we can guarantee that the smallest height (shortest dimension) of a triangle in a triangulation of an n-vertex polygon (with holes) is a constant fraction of the largest possible. Using O(n log n) triangles for simple polygons or O(n(3/2)) triangles for polygons with holes, we can guarantee that the largest angle is no greater than 150 degrees. We can add the guarantee on smallest height to these no-large-angle results, without increasing the asymptotic complexity of the triangulation. Finally we give a nonobtuse triangulation algorithm for convex polygons that uses O(n(1.85)) triangles.
引用
收藏
页码:171 / 192
页数:22
相关论文
共 19 条
[1]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[2]   NONOBTUSE TRIANGULATION OF POLYGONS [J].
BAKER, BS ;
GROSSE, E ;
RAFFERTY, CS .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :147-168
[3]  
BARAHILL R, 1983, SURFACES CAGD, P1
[4]  
BERN M, 1992, COMPUTING EUCLIDEAN
[5]  
BERN M, 1991, 31ST IEEE F COMPUTER, P342
[6]  
BERN M, 1991, 7TH ACM S COMPUTATIO, P342
[7]  
BERN M, 1990, 31 ANN S FDN COMP SC, P231
[8]  
EDELSBRUNNER H, 1992, 8TH ACM S COMP GEOM, P53
[9]  
EPPSTEIN D, 1992, 3RD ACM SIAM S DISC, P48
[10]   A SWEEPLINE ALGORITHM FOR VORONOI DIAGRAMS [J].
FORTUNE, S .
ALGORITHMICA, 1987, 2 (02) :153-174