AN ACCURATE PRODUCT SVD ALGORITHM

被引:15
作者
BOJANCZYK, AW
EWERBRING, LM
LUK, FT
VANDOOREN, P
机构
[1] Cornell University, School of Electrical Engineering, Ithaca
[2] Argonne National Laboratory, Mathematics and Computer Science Division, Argonne
[3] Cornell University, School of Electrical Engineering, Ithaca
[4] Philips Research Laboratory, B-1348 Louvain-la-Neuve
关键词
SINGULAR VALUE DECOMPOSITION (SVD); HK-SVD; SVD OF A MATRIX PRODUCT; JACOBI-SVD ALGORITHM; BACKWARD ERROR ANALYSIS;
D O I
10.1016/0165-1684(91)90062-N
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new algorithm for computing a singular value decomposition of a product of three matrices. We show that our algorithm is numerically desirable in that all relevant residual elements will be numerically small.
引用
收藏
页码:189 / 201
页数:13
相关论文
共 12 条
[1]  
Charlier, Vanbegin, Van Dooren, On efficient implementations of Kogbetliantz's algorithm for computing the singular value decomposition, Numer. Math., 52, pp. 279-300, (1988)
[2]  
De Moor, Golub, Generalized singular value decompositions: A proposal for a standardized nomenclature, Manuscript NA-89-05, (1989)
[3]  
Ewerbring, A new generalization of the singular value decomposition: Algorithms and applications, Ph.D. dissertation, (1989)
[4]  
Ewerbring, Luk, Canonical correlations and generalized SVD: Applications and new algorithms, J. Comput. Appl. Math., 27, pp. 37-52, (1989)
[5]  
Ewerbring, Luk, Computing the singular value decomposition on the Connection Machine, IEEE Trans. Comput., 39, pp. 152-155, (1990)
[6]  
Ewerbring, Luk, The HK singular value decomposition of rank-deficient matrix triplets, Report MCS-P125-0190, (1990)
[7]  
Fernando, Hammarling, A product induced singular value decomposition for two matrices and balanced realisation, Linear Algebra in Signals, Systems and Control, pp. 128-140, (1988)
[8]  
Heath, Laub, Paige, Ward, Computing the SVD of a product of two matrices, SIAM Journal on Scientific and Statistical Computing, 7, pp. 1147-1159, (1986)
[9]  
Luk, A triangular processor array for computing singular values, Lin. Algebra Appl., 77, pp. 259-273, (1986)
[10]  
Luk, Park, A proof of convergence for two parallel Jacobi SVD algorithms, IEEE Trans. Comput., 38, pp. 806-811, (1989)