SMOOTHING PROPERTIES AND RETARDED ESTIMATES FOR SOME DISPERSIVE EVOLUTION-EQUATIONS

被引:161
作者
GINIBRE, J
VELO, G
机构
[1] UNIV BOLOGNA, DIPARTMENTO FIS, I-40126 BOLOGNA, ITALY
[2] IST NAZL FIS NUCL, BOLOGNA, ITALY
关键词
D O I
10.1007/BF02099195
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Smoothing properties, in the form of space-time integrability properties, play an important role in the study of dispersive evolution equations. A number of them follow from a combination of general arguments and specific estimates. We present a general formulation which makes the separation between the two types of ingredients as clear as possible, and we illustrate it with the examples of the Schrodinger equation, of the wave equation, and of a class of 1 + 1 dimensional equations related to the Benjamin-Ono equation. Of special interest for the Cauchy problem are retarded estimates expressed in terms of those properties. We derive a number of such estimates associated with the last example, and we mention briefly an application of those estimates to the Cauchy problem for the generalized Benjamin-Ono equation.
引用
收藏
页码:163 / 188
页数:26
相关论文
共 24 条
[1]   NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES [J].
ABDELOUHAB, L ;
BONA, JL ;
FELLAND, M ;
SAUT, JC .
PHYSICA D, 1989, 40 (03) :360-392
[2]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[3]   LP-LP' ESTIMATES FOR WAVE-EQUATION [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1975, 145 (03) :251-254
[4]   ON SCATTERING AND EVERYWHERE DEFINED SCATTERING OPERATORS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
BRENNER, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (03) :310-344
[5]  
Constantin P., 1988, J AM MATH SOC, V1, P413, DOI [10.2307/1990923, DOI 10.2307/1990923]
[6]  
GINIBRE J, 1985, ANN I H POINCARE-PHY, V43, P399
[7]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[8]   SMOOTHING PROPERTIES AND EXISTENCE OF SOLUTIONS FOR THE GENERALIZED BENJAMIN-ONO-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) :150-212
[9]  
GINIBRE J, 1991, PUBL IRMAR
[10]  
Hormander L., 1983, ANAL LINEAR PARTIAL