LYAPUNOV FUNCTIONS AND ALMOST SURE EXPONENTIAL STABILITY OF STOCHASTIC DIFFERENTIAL-EQUATIONS BASED ON SEMIMARTINGALES WITH SPATIAL PARAMETERS

被引:6
作者
MAO, XR
机构
[1] Univ of Warwick, Coventry
关键词
D O I
10.1137/0328078
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The objective of this paper is to use the Lyapunov function to study the almost sure exponential stability of the stochastic differential equation Φt = x + ∫0t F(Φs, ds), where F(x, t) is a continuous C-semimartingale with spatial parameter x. This equation includes many important stochastic systems, for example, the classical Ito equation. More importantly, the result can be employed to study the bound of the Lyapunov exponent of stochastic flows.
引用
收藏
页码:1481 / 1490
页数:10
相关论文
共 12 条
[2]  
ARNOLD L, 1984, LECTURE NOTE MATH, V1186, P129
[3]  
Arnold L., 1983, PROBABILISTIC ANAL R, P1, DOI 10.1016/B978-0-12-095603-6.50006-3
[4]  
Carverhill A., 1985, Stochastics, V14, P273, DOI 10.1080/17442508508833343
[5]  
CHAPPELL M, 1984, LECT NOTES MATH, V1186, P292
[6]  
Crauel H., 1984, Stochastics, V14, P11, DOI 10.1080/17442508408833329
[7]  
CURTAIN R, 1972, LECTURE NOTES MATH, V294
[8]  
HASMINSKII RZ, 1967, THEOR PROBAB APPL, V12, P144
[9]  
KUNITA H, IN PRESS STOCHASTIC
[10]  
Ladde G. S., 1981, DIFF EQUAT, P215