STEEPEST-DESCENT CONTOURS IN A KANTOWSKI-SACHS MICROSUPERSPACE MODEL

被引:16
作者
CHAKRABORTY, S
机构
[1] Department of Mathematics, Jadavpur University
来源
PHYSICAL REVIEW D | 1990年 / 42卷 / 08期
关键词
D O I
10.1103/PhysRevD.42.2924
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper deals with the microsuperspace model to determine the wave function following the Hartle-Hawking no-boundary proposal in the Kantowski-Sachs metric ansatz. The path integral reduces to a single ordinary integration and is evaluated by the method of steepest descent. © 1990 The American Physical Society.
引用
收藏
页码:2924 / 2926
页数:3
相关论文
共 12 条
[1]  
[Anonymous], 1996, TABLES INTEGRALS SER
[2]   WAVE-FUNCTION WITH 2ND-ORDER CORRECTION AND INFLATIONARY SOLUTIONS IN QUANTUM COSMOLOGY [J].
CHAKRABORTY, S .
PRAMANA-JOURNAL OF PHYSICS, 1990, 34 (05) :403-414
[3]  
DEBRUIJN NG, 1958, ASYMPTOTIC METHODS
[4]   STEEPEST-DESCENT CONTOURS IN THE PATH-INTEGRAL APPROACH TO QUANTUM COSMOLOGY .2. MICROSUPERSPACE [J].
HALLIWELL, JJ ;
LOUKO, J .
PHYSICAL REVIEW D, 1989, 40 (06) :1868-1875
[5]   INTEGRATION CONTOURS FOR THE NO-BOUNDARY WAVE-FUNCTION OF THE UNIVERSE [J].
HALLIWELL, JJ ;
HARTLE, JB .
PHYSICAL REVIEW D, 1990, 41 (06) :1815-1834
[6]   WAVEFUNCTION OF THE UNIVERSE [J].
HARTLE, JB ;
HAWKING, SW .
PHYSICAL REVIEW D, 1983, 28 (12) :2960-2975
[7]   SIMPLICIAL MINISUPERSPACE .3. INTEGRATION CONTOURS IN A 5-SIMPLEX MODEL [J].
HARTLE, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (02) :452-460
[8]  
HAWKING SW, 1987, ADV SERIES ASTROPHYS, V3
[9]   QUANTUM COSMOLOGY AND RECOLLAPSE [J].
LAFLAMME, R ;
SHELLARD, EPS .
PHYSICAL REVIEW D, 1987, 35 (08) :2315-2322
[10]  
MORSE PM, 1953, METHODS THEORETICAL, V1